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I. INTRODUCTION 

The Kalman filter is a sequential estimator whose input 

is a set of measurements taken from a random process which 

can be modeled as a linear state-variable system with white-

noise driving functions, and whose output is an estimate of 

the state of that system at a given instant of time. Kalman 

[1] was the first to show that such an estimator is also a 

linear state-variable system whose parameters, or gains, de­

pend upon the solution of a nonlinear matrix difference equa­

tion. This equation is called the covariance equation since 

its solution happens to be the covariance matrix associated 

with the estimation errors. 

The stability of the covariance equation is important 

because its solution is both an integral part of the Kalman 

filter and is also indicative of the quality of the estimate. 

It has been noted in some numerical studies [2- 3] that in 

some cases the covariance matrix does not remain bounded, 

and this has generally been attributed to the fact that round­

off error is always introduced in any practical implementation 

of the Kalman filter. However, the manner in which this 

happens and the circumstances which give rise to it have not 

been well understood. The purpose of the research reported 

in this thesis was to investigate the stability properties of 

this equation and to determine the factors which cause it to 

be either stable or unstable. 
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Some theoretical investigations of this problem have 

been reported by other investigators, and the results of 

these investigations are reviewed in Chapter II. The addi­

tional results obtained by the author are given in Chapter 

III. The remainder of this chapter is devoted to the precise 

description of the Kalman filter and to the definition of 

terms which are used throughout this thesis. 

A. The Kalman Filter 

The Kalman filter is basically a technique for esti­

mating the value of one or more signals when a set of measure­

ments which are linearly related to those signals, but also 

contain some error, are known. The technique for doing this 

at discrete instants of time was published by Kalman [1] in 

1960, and the technique for doing this continuously was 

published by Kalman and Bucy [4] in 1961. The later technique 

will be described first." 

1. The continuous-time Kalman filter 

The continuous-time Kalman filter is designed to estimate 

signals which can be modeled as state variables of a con­

tinuous-time dynamic system of the form 

^State variable notation is used extensively in the 
description of the Kalman filter, and this notation relies on 
the use of matrices. For a description of the notational con­
ventions used in this thesis, see Appendix A, and for a de­
scription of the state space approach to linear system theory, 
see Zadeh and Desoer [5]. 
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X = A(t)x + h(t) (1.1) 

whose inputs, h(t)/ are white-noise random processes with 

the statistical properties: 

E [h (t) ] = 0^ (1.2) 

E [h (t)h ̂ (o) ] = H(t)ô(t-a), (1.3) 

where H(t) is a symmetric, nonnegative definite matrix for 

all t>t_ and 6(t) is the Dirac delta function. The measure-
— u 

ments, ̂ (t), must also be related to the state variables by 

an equation of the form 

Y.(t) = M(t)x(t) + ̂ (t) (1.4) 

where the elements of the vector ̂ (t) are the measurement 

errors, which must have statistical properties of the form 

E[^(t) J = 0 (1.5) 

E [^(t)^'(a) ] = V(t)ô(t-a) (1.6) 

E [Ay (t)h/(o) ] = Or (1.7) 

in which V(t) is also a symmetric, positive definite matrix 

for all t^O.^ 

The Kalman filter is a linear dynamic system described 

Bryson and Johansen [6] have treated systems in which 
the inputs and measurement errors are correlated, and in which 
the V(t) matrix may be positive semidefinite. 
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by the differential equation 

X = A(t)x + K(t)[^(t)-M(t)x], (1.8) 

wher^ X is the state of the Kalman filter and is also the 

optimum linear estimate of x(t). The measurements ̂ (t) 

are the inputs to the Kalman filter, the initial state of 

the filter is 

XCtg) = EExXtg)], (1.9) 

and the elements of K(t) ars gain variables which are given 

by the formula 

K(t) = P(t)M'(t)v"l(t) . (1.10) 

The n-by-n matrix P(t) is the covariance matrix of the errors 

in estimation, 

P (t) = E L (x-x) (x-x) ' ] , (1.11) 

and it is the solution of the matrix Riccati equation: 

P = A(t)P + PA'(t) + H(t) - PM^(t)v"^(t)M(t)P . (1.12) 

A block diagram of the model of the random process and the 

Kalman filter is shown in Figure 1.1. 

The items which must be specified before the Kalman 

filter can be implemented are: The process coefficients 

A(t) and M(t), the process covariances H(t) and V(t), the 
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initial estimate x(tQ), and the covariance of the initial 

estimate PCt^). 

2. The discrete-time Kalman filter 

The discrete-time Kalman filter is designed to estimate 

x(t) only at discrete instants of time t^/ ..., t^^ ••• . 

It is assumed that these signals can be modeled as the state 

variables of a discrete-time dynamic system of the form^ 

^+1 " ̂k-k "** ^ (1.13) 

whose inputs, hj^, are white noise random sequences with the 

statistical properties 

E[h^] = 0 (1.14) 

where is a symmetric, nonnegative definite matrix for 

all k>0, and 6, , is the Kronecker delta function. The 

measurements are assumed to be related to the state variables 

by the equation 

= % + AZk (1-16) 

^The form ̂  will be used in preference to the form 

x(tj^) whenever possible. However, when an element of a 

vector or matrix which depends on t^ is to be denoted, the 

form x^(t^) will be used. 



www.manaraa.com

where the elements of Ay^ are the measurement errors which 

have the statistical properties 

E [Ayj,3 = 0^ (1.17) 

E [Ay, h/ ] = 0, (1.19) 
^1 ̂ 2 

where is a symmetric, nonnegative definite matrix for 

all k^O. 

The discrete-time Kalman filter is the linear dynamic 

system described by the pair of equations 

% = Bk + '^k'ik-^k^' 

= *k^ ' 

where 

X- = a oriori estimate of x. . i.e.. the estimate based —jc - • 
on the measurements ̂  ... 

and 

x^ = a posteriori estimate of x^, i.e., the estimate 

based on the measurements ••• 

The gain matrix, in this case, is given by 

^k = <VkV (1-22) 

where P, is the a priori covariance matrix 
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-ElCE^-ïk) I' <1-23) 

which is the solution of the pair of equations 

°k = V^k"k'<VkV+ \>"Vk (1-24) 

= Wl^ +Hk' (1-25) 

in which is the a posteriori covariance matrix 

A E[(x^-x^l(x^rx%)'] . (1.26) 

Equations (1.24, 1.25) can also be written as the single 

difference equation 

Pk+i = \'fk-^k\' '"k^kV +^k>'X^'kJ*k <!•"> 

which is the covariance equation for the discrete-time Kalman 

filter. A block diagram of the discrete-time random process 

model and Kalman filter is shown in Figure 1.2. 

Equation (1.24) has several alternative forms which are 

listed below: 

Ok = ̂ k-%^k 

= ̂ k-^kV V (l-28b) 

= (1-28C) 

= \"^"k>~^ (1.28a) 

= (X.28e) 
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= . (1.28f) 

The first two forms are a direct result of (1.22). Form 

(1.28c) is proved as follows: 

- W' + 

= - ̂ kVk - ̂ k< K *  '=k'Vk"k' + ^k>=S:' 

= ̂ k - «^kVk - V 

= Qjç . (1.29) 

Form (1.28d) is called the matrix inversion lemma, and it is 

proved in [7]. The last two forms are corollaries of the 

matrix inversion lemma, and they are proved in Appendix B. 

Obviously, for each form of Q^, there is.a corresponding 

form of (1.27) which is obtained by replacing the expression 

within the brackets by one of the right sides of (1.28). 

One of the most frequent applications of the discrete-

time Kalman filter is to estimate the state of a continuous-

time random process, as described by (1.1 - 1.3), when the 

measurements are made at discrete time instants t^, t^, etc. 

Since the state of a continuous-time system is given by the 

equation 

x(t) = $(t,t^)x(t^) + 4> (t,T)h (t) dT (1.30) 

^k 

where $(t,T) is the transition matrix from time x to time t. 
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it is possible to use (1.13) with 

\ = *<Vi' tk' 
and 

f^+1 ^ = ^(t^+l/T)h(T)dT 

(1.31) 

(1.32) 

to model the state vector at time t^^^. The matrix is 

nonsingular since it is the transition matrix of a continuous-

time system (Zadeh and Desoer [5], p. 340) . Also the discrete-

time input covariance matrix, is related to the continuous-

time input covariance matrix, H(t), by the equation 

H, = E[| 
^+1 r^H-l 

r^+1 r^+1 

$(t^+^,T)h/T)h'(a)$'(t^+^fC)dadT] 

0 (t^^^/T)H(T) S (a-T) $ '(t^+^,a) dadT 

t 
k-H 

(tk+l'?)B(?)*'(t%+l,T)dT . (1.33) 

B. Controllability and Observability 

The concepts of controllability and observability were 

introduced by Kalman [8, 9] in 1960 and are important in the 

theory of the Kalman filter. 

A continuous-time dynamic system of the form 
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X = A(t)x + G(t)u(t) (1.34) 

is defined to be controllable at time tg if for every initial 

state, X(tg), there exists an input which drives the state 

to 2 at. some finite time t^>tQ. This is true if and only if 

the matrix 

t. 

^ $ (tg, t)G (t) G '(t) 4 '(tp, t) dt (1.35) 

is positive definite for some finite t^>tQ (Zadeh and Desoer 

[5]/ pp. 512-514). The controllability of a time-invariant 

system of the form 

X = Ax + Gu(t) (1.36) 

is independent of the initial time tg, which implies that 

it is permissible to call the system controllable rather than 

controllable at time tg. Such a system can be tested 

for controllability by determining if the rank of the matrix 

= [G,AG,A^G,...,A^"^G] (1.37) 

is equal to n, the dimension of the state space. If the 

rank of is less than n, then the system is only partially 

controllable since only those initial states in the column 

space of can be brought to zero in a finite time-interval 

(Zadeh and Desoer [5], pp. 49 8-501). 
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A system which is described by (1.34) and the output 

equation 

^(t) = M(t)x(t) (1.38) 

is defined to be observable at time tg if every initial state, 

X(tg) , can be determined from the zero input response over a 

finite time interval. This is true if and only if the matrix 

t^ 

Wb(ti,to) = I *'(t,tQ)M'(t)M(t)*(t,tQ)dt (1.39) 

is positive definite for some finite time t^>tQ. The 

observability of a time-invariant system described by (1.36) 

and the output equation 

^(t) = Mx(t) (1.40) 

is also independent of t^, and it can be determined by find­

ing the rank of the matrix 

= [M^,A^M^,(A^)^M(A^)^~^M^]. (1.41) 

If the rank of is n, the system is observable ; if it is 

less than n, then only the orthogonal projection of x(tg) 

onto the column space of can be determined from the ob­

served output. 

A discrete-time system of the form 

%+l = + % (1-42) 
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% = % (1-43) 

is controllable at time if the matrix 

k-1 / 
1/4- 4- \ I- n / r * ^ W^(tj^) = [$ ^(t^ftQ)] (1.44) 

is positive definite for some finite k>0, where 

= VlV2---*j • (1-45) 

A time-invariant discrete-time system is controllable if and 

only if the rank of the matrix 

(1.46) 

is n, and if the rank of is less than n, then the space 

of controllable states is the column space of Q^. 

The system is observable at time t^ if the matrix 

k-1 
W^(t^) = Z $^(t^,tQ)M/M^$(t^,tQ) (1.47) 

i—0 

is positive definite for some finite k>0, and a time-

invariant system is observable if and only if the rank of 

the matrix 

($')2M',...,(*')*"lM'] (1.48) 

is n. If the rank of is less than n, then only the ortho­

gonal projection of x^ onto the column space of can be 

determined from the observed output. 

A random process such as (1.1) is defined to be 
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completely driven at time if the covariance of the 

component of the state vector due to the white noise inputs, 

$ (t, $ (t-/T)dT, (1.49) 
0 ^ 

R^(ti) = 

is positive definite (or equivalently, the range space of 

Rc(ti) contains the whole state space). Similarly, the 

discrete-time random process (1.13) is defined to be com­

pletely driven at time tj^ if the covariance 

^d^^^ ^ (t^,t_+i) (1.50) 
1=0 

is positive definite. 

C. Modes of Linear, Time-Invariant Systems 

A study of the modes of a linear system yields con­

siderable insight into the behavior of such systems. Let 

T be a matrix that transforms A in (1.36) into its Jordan 

form, A=T """AT, and let w(t) be defined such that 

x(t) = Tw(t) . (1.51) 

Then (1.34) is equivalent to the equation 

w = Aw + T~^Gu(t) , (1.52) 

with the initial condition 

w(tQ) = T"^x(tQ) . (1.53) 
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If A has m distinct eigenvalues, each 

of order p^, then the general form of the Jordan matrix is 

= diag(A^,A2/.../A^) (1.54) 

where each submatrix is a p^-by-p^ matrix of the form 

^i = 

X 6 

0 Xi 6 

0  . . .  0  0  

. .  0  0  

0 0 0 ... X^ 6 

0 0 0 ... 0 X 

(1.55) 

in which each element labelled 6 is either one or zero. 

Let the vector w(t) and the matrix T ̂  be partitioned as 

w (t) = 

(t) 

m 

(1.56,1.57) 

respectively where (t) is a p^-dimensional vector and 

is a p^-by-

partitioned as 

is a p^-by-n submatrix of T Also let the matrix T be 

^ V 
(1.58) 

in which each is an n-by-p^ submatrix of T, let be the 
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sxibspace spanned by the columns of and let the n-

dimensional vector (t) be defined such that 

Ç^^(t) = T^ç^(t) . (1-59) 

Then (1.51, 1.56, 1.58, 1.59) imply that every vector in the 

state space can be written as the sum 

m m 
x{t) = E T.ç^. (t) = Z (t) (1.60) 

i=l ^ ̂  i=l ^ 

of m vectors, one from each of the subspaces x 

Since A is a block diagonal matrix, (1.52) implies 

that each function ç.(t) satisfies the differential equation 
—1. 

Ç. = A.Ç. + s/Gu(t) , (1.61) 
— 1  —  

and by premultiplying by and replacing by 

i-i - ~ ̂ i ̂ i ' (1.62) 

it can be seen that each function C-(t) satisfies the dif-
—1 

ferential equation 

=T.A.S.'C. + T.s/Gu(t), (1.63) 
—X 1 X— X XX — 

in which the initial conditions are 

(t.) = T.S.'xft.) . (1.64) 
—1 u 1 i — u 

The vector functions (t) are called the modes of the system, 

and they are of interest because, by (1.63), the motion of 
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each mode in the subspace is independent of the motion 

of any other mode. The driving function for the ith mode, 

TiSi'Gu(t), and the initial value of are respectively 

the projection of the vectors Gu(t) and x(t^) onto the sub-

space along all other subspaces. 

A mode, of the random process 

X = Ax + h(t) (1.65) 

E[h(t)] = 0 (1.66) 

E[h(t)h'(a)] =H5(t-a) (1.67) 

is defined to be completely driven if the subspace is 

contained within the range space of the matrix 

t^ 

= I 4(t)H$'l 
J to 

where t^ is any number > tg and is the covariance of the 

component of the state vector due to the white noise inputs. 

It is shown in Appendix C that (t) is completely driven if 

and only if no eigenvector of ̂ corresponding to the eigen-
* 

value is a null vector of H. The mode (t) is defined 

to be completely observable if 0^ is the only vector common to 

and n (P^,) , and it is shown in Appendix C that this 

is true if and only if no eigenvector of A corresponding 

to the eigenvalue is a null vector of M. 

The modes of a discrete-time system of the form 

= I 4(t)H$'(t)dt (1.68) 
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ïk+l = *5k + %k (1-69) 

are similarly defined. Let T be a matrix that transforms 0 

into its Jordan form, A = T and let (1.51, 1.53-1.60) 

apply. Then 

Sik+l = • <1-70' 

^i^^+1^ ^ ̂ i^i , (1.71) 

and the modes are the vectors which satisfy the 

equation 

^i^^k+1^ ^ ^ (1.72) 

and therefore move independently in the subspaces t^. The 

driving functions and initial values are respectively the 

projection of h^ and XQ onto along all other subspaces. 

When the inputs are white noise with zero mean and co-

variance H, then the mode.^^(tj^) is defined to be completely 

driven if is contained within the range space of 

n-1 . . 
R, = Z $^H($^)^, (1.73) 

i=0 

the covariance at time t^ of the component of the state 

vector due to the white noise inputs, and it is shown in 

Appendix C that this is true if and only if no eigenvector of 

/ * $ corresponding to the eigenvalue is a null vector of H. 

Similarly, the mode is defined to be completely observable 
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if 0^ is the only, vector common to both and n (P^ ) , and it 

is shown in Appendix C that this is true if and only if no 

eigenvector of $ corresponding to the eigenvalue is a 

null vector of M. 

D. Stability of Dynamic Systems^ 

The state equation for a broad category of continuous-

time systems can be written in the form 

X = £(x,u(t) /t) (1.74) 

where x is the state vector, u(t) is the input vector, and 

^ is a vector valued function of the state and input vectors 

and time. The system is called stationary if f does not 

depend on its third argument, undriven if u(t) = 0, and 

autonomous if it is both stationary and undriven. A state, 

x^/ of an undriven dynamic system is called an equilibrium 

state if ̂ (x^, Oy t) = 0^ for all t. A system is linear if f 

is linear in its first and second arguments, and (1.74) can 

then be written in the form 

X = A(t)x + G(t)u(t) . (1.75) 

When the system is undriven, a unique solution of (1.74) 

exists for all t if f is continuous in its third argument and 

satisfies the global Lipschitz condition 

^This section is based largely on two companion papers 
by Kalman and Bertram [10, 11]. 
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I |f(XifO;t) - f (Xg^Oyt) I I < k| Ix^^-xgl I (1.76) 

for all t/ where x^ and x^ are any two vectors in the state 

space and k is a positive constant. The value, at time t, 

of this solution when x(tQ) = Xq is denoted by ̂ (tzx^,t^) , 

and the set of values of ̂ (t;xQ,tQ) as t varies from t^ to ̂  

is called a trajectory of the system. 

Many different kinds of stability have been defined, 

and a given system may be stable according to many or none 

of the various definitions. Those that are pertinent to 

this thesis are defined below: 

1. Stability. An equilibrium state, x^, of an undriven 

dynamic system is stable if for every positive number 

e, there corresponds a positive number GfE/tg) such 

that if ll^-x^||<5 then [ [ <{> (t;xQ ̂ t^)-x^ | | <e for 

all t^tg. The notation 6(e,tQ) is used to indicate 

that, in general, 5 depends on s and tg. 

2. Asymptotic stability. An equilibrium state of an 

undriven dynamic system is asymptotically stable if 

(i) it is stable and (ii) if every trajectory 

starting sufficiently near x^ converges to x^ as 

t-x», i.e. there exists a positive number r(t^) 

such that if j|x^-x^||^r(t^), then for every 

positive number u there corresponds a time 

T(u,^,tQ) such that 1 li(t ;^,tQ)-^| [ <y for all 
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t>tQ + T. 

3. Uniform stability and uniform asymptotic stability. 

The definitions for uniform stability and uniform 

asymptotic stability are the same as the definitions 

for stability and asymptotic stability except in 

1) Ô is a function of e only, (t^ dependence is 

dropped), and in 2) r is independent of t^ and T 

depends on y and r only. 

4. Uniform asymptotic stability in the large. An 

equilibrium state of an undriven dynamic system is 

uniformly asymptotically stable in the large if 

(i) it is uniformly stable, (ii) it is uniformly 

bounded, i.e. given any positive number r there 

exists a positive number B(r) such that if 

then 1 1 i(t;xQtQ)| [ <B (r) for all 

t^tg, (iii) every trajectory converges to x^ as 

t-x» uniformly in tg and | lx^| l£r, i.e. given any 

positive numbers r and u there exists a time T(vi,r) 

such that if | {xg-x^l |<r then } |<|i for 

all t>tQ + T. 

The stability of a system must usually be determined 

without knowing the general solution of the differential 

equation. The second method of Lyapunov is a useful and 

frequently applied tool for this purpose. Its application 

to autonomous systems of the form 
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X = f (x) (1.77) 

with an equilibrium state at ̂  = 0^ is described by the 

following theorem. 

Theorem 1.1; 

The system (1.77) is asymptotically stable in the large 

if there exists a scalar function, V(x)^ with continuous 

first partial derivatives such that V(O^) = 0 and (i) 

V (x) > 0 for all X 5^ 0, (ii) V (x) = VV.f (x)<0 for all x ̂  0, 

and (iii) V(x)-x» as | |x| 1"^. If condition (iii) is missing, 

then (1.77) is locally asymptotically stable. 

If the system is linear and time-invariant with 

X = Ax^ (1.78) 

then its stability depends on the eigenvalues of the A 

matrix as specified by the following two theorems. 

Theorem 1.2: 

The system (1.78) is stable if and only if (i) all of 

the eigenvalues of A have nonpositive real parts and (ii) 

those eigenvalues that lie on the imaginary axis are simple 

zeros of the minimal polynomial of A. 

Theorem 1.3: 

The system (1.78) is asymptotically stable if and only 

if all of the eigenvalues of A have negative real parts. 
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The state equation for most discrete-time systems can 

be written in the form 

= f (x(tj^) ,tj^) (1.79) 

where x(tj^) , u(tj^) , and f have the same significance as they 

do for continuous-time systems except they apply only at the 

discrete instants of time t^. The system (1.79) is stationary 

if f does not depend on its third argument, undriven if 

u(tj^) = 0^, and autonomous if it is both stationary and un­

driven. A state, x^, of an undriven discrete-time system is 

called an equilibrium state if = Xg for all t^. 

The system is linear if f is linear in its first and second 

arguments, and (1.79) can then be written in the form 

-^^k+1^ ^ • (1.80) 

A unique solution of (1.79) exists for all t^ if ̂  is con­

tinuous in its first and third arguments, and the value 

of this solution at time t^, when x(tg) = Xg and u(t^) = 0_, 

is denoted by ^(t^;xQft^). Except for the replacement of t 

by t^, the definitions of stability of a discrete-time system 

are identical to those of a continuous-time system. 

The application of the second method of Lyapunov to 

autonomous discrete-time systems of the form 

f (x(t]^)) (1.81) 
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with an equilibrium state at ^ is described by the 

following theorem. 

Theorem 1.4; 

The system (1.81) is asymptotically stable in the large 

if there exists a continuous scalar function, V(x), such 

that V(O^) = 0 and (i) V(x) > 0 for all x ̂  0, (ii) AV = V(x^^^) 

- V(x^) < 0 for all x 7^0_/ and (iii) V(x)-»-« as | |x| If 

condition (iii) is missing, then (1.81) is locally asympto­

tically stable. 

If the system is linear and time-invariant with 

(1.82) 

then its stability depends on the eigenvalues of the $ 

matrix as specified by the following two theorems. 

Theorem 1.5; 

The system (1.82) is stable if and only if (i) all of 

the eigenvalues of $ are contained in the closed disk |X|^1 

and (ii) those eigenvalues that lie on the unit circle are 

simple zeros of the minimal polynomial of 

Theorem 1.6: 

The system (1.82) is asymptotically stable if and only 

if all of the eigenvalues of $ are contained in the open disk 

l x l < i .  
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II. STATEMENT OF THE PROBLEM, LITERATURE 

REVIEW, AND RESUME OF RESULTS 

A. The Problem 

Since the solution of the covariance equation is both an 

integral part of the implementation of the Kalman filter and 

a measure of the estimation error, the stability of this 

equation is very important, particularly in systems that 

operate for long periods of time. Therefore the following 

questions are of interest in the theory of the Kalman filter. 

1. Does a unique solution exist for all t^t^, and if 

so, under what conditions is it stable? 

2. Does the initial value of the covariance matrix 

have any effect on the solution after the system 

has been operating for a long period of time? 

3. Can small errors in the computation of the solution 

be permitted? 

4. What happens if the assumed model of the random 

process is not accurate? 

Other investigators have obtained fairly coir%)lete 

answers to the first, second, and fourth questions in the 

case of the continuous-time covariance equation when the 

random process is completely driven and completely observable 

and several papers have been written on various aspects of 

the fourth question in the case of the discrete-time co-

variance equation. The purpose of the research reported in 
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this thesis was to more adequately answer the first three 

questions in the case of the discrete-time covariance equa­

tion, with particular emphasis on the effect of an incom­

pletely driven or incompletely observable random process. 

B. Prior Work on the Continuous-Time 
Covariance Equation 

The continuous-time covariance equation has been 

studied by Kalman [12], Kalman and Bucy[4], and Potter [13], 

and the following is known about the properties of this equa­

tion: 

1. (Potter) If A(t), H(t), and M''(t) v "^(t)M(t) are 

integrable functions for t^t^, then (1.12) has a unique solu­

tion which is continuous over the interval tg^txt^+T where t>0. 

Since the right side of (1.12) does not satisfy the global 

Lipschitz condition (1.76), the solution may escape to in­

finity at a finite time. However if P(tg) is symmetric non-

negative definite, then P(t) is finite for all t>^tQ. 

2. (Potter) If P(tQ) is symmetric nonnegative (posi­

tive) definite, then P(t) is symmetric nonnegative (posi­

tive) definite for all t^tg. 

3. (Kalman) If P(tQ) is symmetric nonnegative definite 

and the random process is completely driven at time t^>tQ, 

then P(t) is positive definite for all t^t^. 

4. (Potter) If P^(t) and P^(t) are two solutions of 

(1.12) with (tQ)^Pj^ (tQ)^O, then P^ (t) >^Pj^ (t) for all t^tg. 
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In words, if two solutions are initially ordered such that 

one solution is "more positive definite" than the other, 

then this ordering is maintained for all time thereafter. 

As a corollary to this property, Nishimura [14] has shown 

that the same ordering applies if the inequalities 

H (t)>H, (t) and V^(t)>V, (t) are also allowed, 
a D a — D 

5. (Kalman) If the random process is uniformly com­

pletely driven and uniformly completely observable and 

if P (t) and P, (t) are any two solutions of the covariance 

equation with nonnegative definite initial values, then 

P^(t)^Pj^(t) as t->-<»- A system is defined to be uniformly 

completely driven and uniformly completely observable if 

there exist fixed positive constants a, 8, y, 6, a such 

that 

rt 
al < $(t,T)H(T)$/(t,T)dT<6I (2.1) 

t-a 

ana 
•t 

yl < $ (t,t-a)M''(T)M(T) $ (t ,t-cr)dT<ôI (2.2) 
•' t-a 

for all t^a. 

6. (Kalman and Bucy) Let P(t;0,tQ) denote the value of 

the solution of the covariance equation at time t which 

corresponds to the initial condition Pftg) = 0. If A(t) , 

H(t)/ and M^(t)V ^(t)M(t) exist for all t and if for each t 

there exists a tQ<t such that W^(t,tQ)>0, then 
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P^(t) = lim P(t;0/tQ) (2.3) 

exists and is also a solution of the covariance equation. 

7. (Kalman) If the random process is uniformly 

completely driven and uniformly completely observable, then 

every solution of the covariance equation whose initial value 

is nonnegative definite approaches P^(t) uniformly as t^. 

Thus Pg(t) is called the moving equilibrium state of the 

covariance equation. Also under the same conditions, the 

optimal filter (1.8) is uniformly asymptotically stable. 

Potter [13] has studied the properties of the covariance 

equation when A(t), M(t), H(t), and V(t) are constant matrices 

equal to A, M, H, and V respectively. The equilibrium solu­

tions (in general there are more than one) are also constant, 

and are obtained by algebraically solving for the matrices 

which satisfy the equation 

Potter [15] has shown that if the Jordan form of the 2n-by-2n 

matrix 

H + AP + P A 
e e 

/ / -1 
- P M V MP e e 0 . (2.4) 

A H 

R C (2.5) 
, -1 M V M -A 

/ 

is diagonal, then every solution of (2.4) has the form 
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P = FF ^ (2.6) 
e 

where F and T are n-by-n matrices equal to the upper and 

lower halves of the 2n-by-n matrix 

T = (2.7) 

r  

whose columns are selected from the eigenvectors of the 

matrix. Also every set of eigenvectors of which results 

in a nonsingular T matrix generates a solution to (2.4) as 

given by (2.6). The eigenvalues of R^ can be shown to be 

symmetric about the imaginary axis, i.e., if w is an eigen-

* 
value of R^, then -w is also an eigenvalue. In addition. 

Potter [15] has shown that the set of eigenvalues {w^y...,w^} 

corresponding to the columns of T are uniquely related to 

the symmetry and definiteness properties of the P^ matrix 

generated by T as specified by the following two theorems. 

Theorem 2.1; 

If no two eigenvalues in the set satisfy the 

equation a)^+Wj*=0 for l_<i, j<_n, i.e. if no two eigenvalues 

are mirror images with respect to the imaginary axis, then 

P is Hermitian. e 

Theorem 2.2; 

(a) If P^ is Hermitian positive definite, then the 

eigenvalues {w^,...,w^} have nonnegative real parts. (b) If 
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the eigenvalues ^. ,0)^} have positive real parts and F 

is nonsingular, then is Hermitian nonnegative definite. 

In [13] Potter defines a random process to be regular 

if (a) no eigenvector of A, whose corresponding eigenvalue 

/ —1 
has a nonnegative real part, is a null vector of M V M, 

and (b) no eigenvector of A , whose corresponding eigenvalue 

has a nonnegative real part, is a null vector of H. There­

fore by Appendix C, the random process is regular if no 

random walk or unstable mode is either undriven or un-

observable. Potter shows in [13] that if the system is 

regular, then a single, stable, nonnegative definite 

equilibrium solution exists and any solution whose initial 

value is nonnegative definite approaches this equilibrium 

solution exponentially fast. 

C. Prior Work on the Discrete-Time 
Covariance Equation 

Considerably less has been written on the stability of 

the discrete-time covariance equation than has been written 

on the stability of the continous-time covariance equation. 

Nishimura [16, 17] has studied the effect of using an in­

correct PQ matrix and has shown that if the optimal, actual, 

and calculated covariances are initially ordered as 

^c^^O^' then this ordering is maintained for all t^>tQ. 

Heffes [18] has studied the effect of using incorrect and 

Vj^ matrices as well as an incorrect PQ matrix, and has derived 
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a difference equation for the actual covariance matrix in 

terms of the actual driving and measurement covariances and 

the transition matrix of the computed filter. Kalman states 

without proof that all of the properties of the continuous-

time covariance equation which he has derived in [12] also 

apply to the discrete-time case. This has recently been 

demonstrated, in part, in a paper by Deyst and Price [19] in 

which the optimal filter (1.20, 1.21) is shown to be uniform­

ly asymptotically stable in the large if the random process 

(1.13-1.19) is uniformly completely driven and uniformly 

completely observable. In a companion paper by Price [20], 

it is shown that these same conditions imply that the dif­

ference equation for the actual error covariance matrix is 

also uniformly asymptotically stable in the large. Although 

it is not actually proved, the implication of this paper is 

that the "divergence problem" of the Kalman filter is due 

to the divergence of the actual covariance matrix from the 

conrouted covariance matrix and that this is likely to occur 

if the random process is not uniformly completely driven and 

uniformly completely observable. 

D. Resume of Results 

Although a few theorems concerning properties of the 

time-varying discrete-time covariance equation are proved in 

the next chapter, the primary contribution of this thesis is 

a detailed analysis of the stability properties of the time-
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invariant discrete-time covariance equation, similar to 

Potter's analysis of the time-invariant continuous-time 

covariance equation. Techniques are derived for algebraical­

ly finding the equilibrium solutions of the covariance equa­

tion and for predicting their symmetry, definiteness, and 

local stability. It is shown that the covariance equation 

has a stable equilibrium solution if the random process has 

no random walk or unstable mode which is unobservable, and 

that the stable equilibrium solution is the only nonnegative 

definite equilibrium solution if the random process is regular. 

It is also shown in this case that any solution of the co-

variance equation, whose initial value is nonnegative defi­

nite, converges to the stable equilibrium solution. If the 

random process has an unstable mode which is undriven but 

observable, then it is shown that the covariance equation 

has two nonnegative definite equilibrium solutions and that 

the initial value of a solution determines which of the two 

equilibrium solutions is approached. Also since one of these 

is unstable, round-off error generally causes the solution 

to depart from the unstable equilibrium and to finally 

approach the stable equilibrium solution. 

A somewhat surprising result of the author's research 

is the fact that if the random process is regular, then the 

computed covariance matrix does not have to be strictly 

nonnegative definite, i.e., it is permissible for one or more 
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of the eigenvalues of the covariance matrix to be less than 

zero. This can happen as the result of round-off error if 

the equilibrium solution is singular or nearly singular. 

It is also shown that Price's analysis of the "divergence 

problem" is correct except that the uniformly completely 

driven and uniformly completely observable conditions are 

stronger than necessary. 
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III. PROPERTIES OF THE DISCRETE-TIME 

COVARIANCE EQUATION 

The stability of the discrete-time covariance equation 

and related properties are described in this chapter. The 

existence and uniqueness of a solution is described in 

Section A, and the symmetry/ definiteness, and ordering of 

solutions is described in Section B. In Section C, the 

equilibrium solutions and local and global stability of the 

time-invariant covariance equation are described. While it 

is certainly a restriction to limit these considerations to 

the time-invariant case, since in many practical applications 

the filter is time-varying, the author believes that the re­

sults he has obtained do give considerable insight into the 

stability properties of the covariance equation. 

A. Existence and Uniqueness of 
a Solution 

The existence and uniqueness of a solution to the dis­

crete-time covariance equation are more easily proved than 

in the continuous-time case. If the sampling time, At^ = 

t^^2_ ~ ' has a positive lower bound, then the value of 

the covariance matrix at any finite time is obtained from a 

finite number of iterations of the covariance equation. 

Therefore, a unique solution exists at time t^ if the matrix 

is nonsingular for all k<n. By Theorem 3.2 of 
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the next section, the conditions PQ^O and V^>0 for all k<n, 

which are true for most applications of the Kalman filter, 

are sufficient for this to be true. Furthermore, in [12] 

Kalman shows that even when is singular, the 

solution can be continued by use of the generalized inverse.^ 

B. Symmetry, Definiteness, 
and Ordering 

Since a matrix must be symmetric nonnegative definite 

to be a covariance matrix, the following two theorems 

indicate that the solution of the covariance equation has 

the properties of a covariance matrix if PQ is symmetric 

nonnegative definite. 

Theorem 3.1: 

If PQ is symmetric, then P^ is symmetric for all k > 0. 

Proof: 

Suppose P^ is symmetric. Then P^^^ is symmetric since 

and are also symmetric. Thus by setting k = 0, 1, 2, 

... the symmetry of P^ is implied by the symmetry of PQ 

for all k > 0. 

Theorem 3.2: 

If PQ is nonnegative definite, then Pj^ is nonnegative 

definite for all k > 0. 

^See Penrose [21, 22] for a discussion of the generalized 
inverse. 
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Proof: 

The covariance equation can be written in the form 

by substituting (1.28c) into (1.25). If is nonnegative 

factor in each term of (3.1) is nonnegative definite. Thus, 

by setting k = 0, 1/2/ ... it can be seen that PQ ̂  0 

implies P^ 0 for all k > 0. 

The next two theorems show that the discrete-time 

covariance equation has definiteness and ordering properties 

identical to those described in items 3 and 4 in Section II.B 

for the continuous-time case. 

Theorem 3.3: 

If the discrete-time random process (1.13) is completely 

driven at t%me t^/ %f PQ ^ 0 / and %f ^ G for all k / then 

Pj^ > 0 for all k ̂  m. 

Proof; 

Suppose P^ were singular with ̂  as a null vector. Then 

definite/ then P. . is nonnegative definite since the middle 

by (3.1) 

/ 

z + z^H , z 
— — m— 1— 

(3.2) 
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Since P ^ > 0/ V , > 0, and H ^ > 0, each term in (3.2) 
m—1 — m—JL m—1 — 

must be zero, so z must be a null vector of , and $,z — lu—X 

must be a null vector of K , and P , . The above argument 
m—X m—1 

can then be repeated to show that ^ is a null vector 

of H o and $ '-5 $ z is a null vector of K , and P m—2 m-z m—1— m—z m—z 

which implies that the argument can again be repeated. Thus 

the assumption that £ is a null vector of P^ implies that 

••• = &'(tm,t,._)z is a null vector of H, for 
k+l m-1— m k+1 — Jc 

k = 0 /  1 ,  . . . /  m - 1 .  B u t  t h i s  i m p l i e s  t h a t  

m-1 
E 

k=0 

which is impossible since the hypothesis requires the random 

y / / 

process to be completely driven at time t^. Thus P^ > 0, 

which by (3.1) implies that P^ > 0 for all k ̂  m. 

Theorem 3.4: 

If Vj, > 0 and P^ (tg) ̂  P^ (tg) ̂  0, then 

P^(t^) > P^(t^) for all k > 0. 

Proof; 

Lst = P^(tg) + £l, P^o(£) = P^(tg) + SI, 

Pal(cl=*o:Pao(s)-Pao(='Mo' '"o^ao"\^aO ^ +«0 

^o'^ao '^'•'•'^0 ^0 "o' *0 "'"''o ' (3.4) 

and 
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^0>"\^b0<^'"*0''^ «0 

= *oCP;J(e)+Mo'v„-\]-lto' + Hj, . (3.5) 

If e > 0, then (s) ̂  (e) > 0, which implies (Bellman 

[23], p. 92) that 0 < P^g (s) < which in turn implies 

that P^^(s) ̂  ̂ bl' Also, since the middle terms in (3.4, 

3.5) are continuous at e = 0, P^(t,) = lim P ,(s), 
£->0 

P, (t, ) = lim P. , (e) , and P (t, ) > P, (t^ ) > 0. This argument 
D 1 D-L a 1 — b 1 — 

can then be repeated to show that for k = 2,3, 

etc. 

C. Properties of the Time-Invariant 
Covariance Equation 

In this section, a technique for determining the equil­

ibrium solutions of the time-invariant covariance equation 

is derived, the properties of these equilibrium solutions 

are described, some local and global stability theorems 

are proved, and the stability of the difference equation for 

the actual covariance matrix is investigated. The matrices 

M^, Vj^, and are assumed to be independent of k and 

are denoted by 0, M, V, and H respectively. Also, it is 

assumed that V is positive definite and 0 is nonsingular. 

The first two subsections are introductory in nature. 

The first is an analysis of the scalar covariance equation 
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showing the effect of observability, controllability, and 

stability of the random process, and the effect of the initial 

variance. The second is an extension of Potter's [15] pro­

cedure for the algebraic solution of quadratic matrix equa­

tions, and serves as a theoretical basis for several theorems 

in the third and fourth subsections. The equilibrium solu­

tions and stability of the multidimensional covariance equa­

tion are analyzed in subsections three and four respectively. 

1. The scalar case 

When P^, $, M, V, and H are scalars — which will be 

denoted by p^, (|>, m, v, and h respectively — the stability 

of the covariance equation can be determined from an examina­

tion of the graph of p^^^ vs. p^. In terms of the above 

scalars, the covariance equation takes the form 

0 V p, 
p. - = + h . (3.6) 
" m'pk+v 

Thus, when m 5^ 0, the graph of this equation is a hyperbola 

whose major axis is parallel to the line ~ whose 

2 2 2 asymptotes are the lines p^ = -v/m and p^^^ = h + (j) v/m . 

On the other hand, when m = 0, (3.6) becomes the equation 

Pfc+X = + h (3.7) 

2 whose graph is linear with slope = (}> . 

Figures 3.1 (a,b,c) are graphs of (3.6) when the random 
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Figure 3.1. Graphs of (3.6) when the random process is 
driven and observable 

(a) stable random process 

(b) random walk random process 

(c) unstable random process 
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process is driven (h > 0) and observable (m ̂  0); Figures 

3.2 (a,b,c) are graphs of (3.6) when the random process is 

undriven (h = 0) and observable; and Figures 3.3 (a,b,c) 

are graphs of (3.6) when the random process is driven and 

unobservable (m = 0). Figure (a) in each case corresponds 

2 to a stable random process (<j) < 1) / Figure (b) corresponds 

2 to a random walk random process (<J) = 1) , and Figure (c) 

2 corresponds to an unstable random process ((j) > 1) . 

The equilibrium values of p^ are the values at which 

the vs. Pj^ curve intersects the unit diagonal. If Pj^ 

is not equal to one of the equilibrium values, then as k 

increases, the points representing p^ move to the left when 

the curve is below the unit diagonal and to the right when 

it is above the unit diagonal. An examination of Figures 

3.1 and 3.2 indicates that when the graph is hyperbolic and 

Pj^ is sufficiently positive so that the corresponding 

2 
Pj^_^2 ^ -v/m , then the points always remain on the lower 

right section of the curve, so arrows can be placed on this 

portion of the curve to show the direction of motion. How-

ever, if p^ is less than this value and greater than -v/m , 

then the next point falls on the upper left section of the 

2 
hyperbola, and if p^ < -v/m , then the next point is to the 

2 2 
right of the line Pj^ = h + <j> v/m . On the other hand, when 

m = 0, there is only one section, so arrows can be placed on 

the entire curve to show the direction of motion. 
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Figure 3.2. Graphs of (3.6) when the random process is 
undriven and observable 

(a) stable random process 

(b) random walk random process 

(c) unstable random process 
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Figure 3.3. Graphs of (3.6) when the random process is 
driven and unobservable 

(a) stable random process 

(b) random walk random process 

(c) unstable random process 
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The following remarks can now be made about the scalar 

COvari ance eguati on; 

(a) When the random process is observable ̂ the 

equilibrium values are 

m^h + v(*2_i)+ •' [m^h+v(4.^-1) ] 

Pex,2 "i;;? • 

Thus when h > 0, p^^ > 0/ and p^2 < 0 ; and when h = 0, then 

2 p^^ = 0 and p^2 ~ v(4) -1) which is positive, zero, and nega­

tive for an unstable, random walk, and stable random process 

respectively. 

(b) When the random process is unobservable, there is a 

single equilibrium at 

Pg = h(l-<{>^) (3.9) 

when the random process is stable or unstable, and no 

equilibrium when it is a random walk random process. 

(c) The scalar covariance equation has a stable, non-

negative equilibrium value unless the random process is un­

observable and either random walk or unstable, and except for 

the undriven unstable case, any solution, whose initial value 

is nonnegative, converges to the stable equilibrium value. 

The undriven unstable case has an unstable equilibrium at 

zero and a stable one which is positive. Therefore, any 

solution, whose initial value is positive, converges to the 

stable equilibrium, but the solution whose initial value is 
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exactly zero remains at zero. 

(d) Since is a variance, it should never be negative. 

However, when it is near zero, it is possible for round-off 

error to make it slightly negative, and if the random 

process is undriven and either random walk or unstable, the 

action of the covariance equation is to make the variance 

even more negative. This eventually results in a catastrophic 

failure of the Kalman filter. However in all other cases 

where a stable nonnegative equilibrium solution exists, the 

action of the covariance equation is to return the variance 

back toward zero, so no problems result. 

2. Solution of the quadratic matrix equation 

In the analysis of the multidimensional covariance 

equation, the solutions to a quadratic matrix equation of 

the form 

A + BP + PC - PDP = 0 (3.10) 

will be needed. A technique for obtaining these solutions 

is derived in this section. This technique is based on, 

but represents a significant extension of. Potter's [15] 

procedure for solving the equation A + BP + PB* - PDP = 0. 

The following three theorems, which are stated together 

and then proved provide the theoretical basis for this 

technique. 



www.manaraa.com

50 

Theorem 3.5: 

If P satisfies (3.10)/ then: 

(a) There exists a Jordan matrix J, a nonsingular 

matrix r, and a matrix F such that 

p = pr -1 (3.11) 

and 

RT = TJ (3.12) 

where 

R = 

B A 

D -C 

and 

T = 

(3.13) 

(3.14) 

(b) There exists a Jordan matrix K, a nonsingula: 

matrix Y, and a matrix Z such that 

P = -Y (3.15) 

and 

SR = KS (3.16) 

where 

S = [Y Z] ; (3.17) 
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(c) The matrices F, F, Y, and Z satisfy the equation 

YF + zr = 0; (3.18) 

and 

(d) J and K are complements in R, i.e. 

I XI - R| = I XI - J| • IXI - K| . (3.19) 

Theorem 3.6: 

Any solution to (3.12) which has a nonsingular T matrix 

generates a solution to (3.10) through (3.11). Similarly, 

any solution to (3.16) which has a nonsingular Y matrix 

generates a solution to (3.10) through (3.15). 

Theorem 3.7; 
r. . 

Let (X-w^) j=l to m^, i=l to a be the elementary 

divisors of R, where the integers r^^ are ordered such that 

r^j 2 r\,j^^. If T satisfies (3.12) and T is nonsingular, 

then the elementary divisors of J must have the form 
p. . 

(X-w^) j=l to n^, i=l to a where p^j £ ̂ ij'^ij — ̂ i j+1' 

and n^ £ m^ (some of the p^j's may be zero). 

Proof of Theorem 3.5; 

(a) Let r be a nonsingular matrix which transforms DP-C 

into its Jordan form 

J = r"^(DP-C)r , (3.20) 
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and let 

F = Pr . (3.21) 

Then by (3.10) 

AF + BPr = prr~^(DP-c)r , (3.22) 

which by (3.20, 3.21) is equivalent to 

AT + BP = PJ , (3.23) 

also by (3.20, 3.21) 

DP - cr = r j . (3.24) 

Thus (3.11) is implied by (3.21) and (3.12) is implied by 

(3.23, 3.24). 

(b) Let Y be a nonsingular matrix which transforms B-PD 

into its Jordan form 

K = Y(B-PD)Y~^ , (3.25) 

and let 

Z = -YP . (3.26) 

Then by (3.25, 3.26) 

YB + ZD = KY , (3.27) 

and by (3.10) 



www.manaraa.com

53 

YA + YPC = -Y(B - PD)Y ^YP (3.28) 

which by (3.25, 3.26) is equivalent to 

YA - ZC = KZ (3.29) 

Thus (3.15) is implied by (3.26) and (3.16) is implied by 

(3.27, 3.29). 

(c) By (3.11, 3.15) 

YF + zr = Y(Fr ^ + Y~^z)r 

= Y(p-p)r 

= 0 . (3.30) 

(d) Let E be the matrix 

,-l" 

E = 

F Y 

(3.31) 

Then 

- 1  

-1 0 r 

Y Z 

and 

E ^RE = 

-1 -1 J r DY 

K 

(3.32) 

(3.33) 

Thus 
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IXI - R| = IXI - E"^RE1 

= IXI - J| • IXI - K| . (3.34) 

Proof of Theorem 3.6: 

If T is a matrix which satisfies (3.12) and has a non-

singular r, then (3.23, 3.24) are satisfied, and by post-

multiplying both (3.23, 3.24) by T ^ and premultiplying 

(3.24) by P = Fr ^, the equations 

BP + A = Fjr"^ (3.35) 

(3.36) 
PDP - PC = Fjr 

are obtained. Thus by subtracting (3.36) from (3.35), it 

is seen that P satisfies (3.10). The second part of the 

theorem is proved in a similar manner. 

Proof of Theorem 3.7: 

Since F is nonsingular, the columns of T are linearly 

independent. Suppose the elementary divisors of J were not 

of the stated form. Then either: (a) J has an eigenvalue, u, 

not equal to any , (b) there is an n^ > m^, or (c) there 

is a p^j > r^j. Each of these conclusions leads to a con­

tradiction as shown below: 

(a) Let X be an eigenvector of J associated with the 

eigenvalue u. Then (RT-TJ)x = (R-yl )Tx = Qi, and since u 

is not an eigenvalue of R, R-uI is nonsingular and Tx = 0. 
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This is a contradiction since the columns of T are linearly 

independent. 

(b) Let the columns of X = ] be linearly 

independent eigenvectors of J associated with the eigenvalue 

0)^. Then (RT-TJ)X = (R-w^I)TX = Or which implies that the n^ 

linearly independent columns of TX are null vectors of 

R-u^I. This is impossible since the dimension of the null 

space of is m^ < n^. 

-1 (c) Let E transform R into its Jordan form = E RE and 

define X such that T = EX. Then X satisfies the equation 

nx = XJ, which implies (Gantmacher [24], vol. 1/ pp. 215-

220) that it has the form 

X = diag(x(l) (3.37) 

where X ̂ ̂  ̂ i 

n. 
1 

is a Z r. 
j=l ^ ij ^ 

.-by- E p.. matrix of the form 

(i) 
11 

(3.38) 

(i) 

The matrices X^are r\^-by-p^2, regular upper triangular 

matrices of the form 

are r 
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X k& 
(i) _ 

a b c  

0 a b 

0 0a 

0 0 0 

or X k& 
(i) _ 

0 a b c 

0 0 a b 

0 0 0 a 

(3. 39a, 
3.39b) 

if 
^ik - 'LI 1 Pil 

Now, for some i, let j be the smallest integer such that 

p^j > r^j, and let be the submatrix of X^^^ whose 

(k,Jl)^ element is the element in the (1,1) position of 

Xx/'' = 

(i) 

'11 

a. 

*l,j+l ••• *l,ni 

j-1,1 ••• "j-l,j *i-l,i+l 

0 « • • 0 

••• ^j-l,n. 

*],]+! 

m^,j+l 

(3.40) 

The elements in the first j columns on and below the row 

are zero since r^,. < p^^ for all k ̂  j and & ̂  j . Thus there ik 
(i) exists a linear combination of the first j columns of A 

which equals 0^, and since the elements in A^^^ are the only 

nonzero elements in the corresponding columns of X^^^, the 

same linear combination of the first columns from the first j 
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sets of columns in is 0^. This implies that the columns 

of X and T are not linear independent, which is a contradic­

tion. Q.E.D. 

These theorems, therefore, imply that all of the solu­

tions of the quadratic matrix equation can. be generated from 

the set,*^, of all solutions of (3.12) which have nonsingular 

lower parts. It is possible to rule out all solutions which 

correspond to J matrices whose elementary divisors do not 

have the form stated in the conclusion of Theorem 3.7 

since these solutions can not have a nonsingular lower part, 

but all other solutions must be tested for nonsingularity. 

Also, the following theorem shows that not all of the solu­

tions of (3.12) are needed because many of them generate the 

same P matrix. 

Theorem 3.8: 

Let t^ = [f/ t/ and t^ = [F^ l' satisfy the 

equations RT^ = T^J^ and RT^ = '^2'^2 z^spectively. (a) If T^ 

and T^ are column equivalent, then and are similar 

-1 -1 
and = FgFg . (b) If and are not similar, 

-1 
then T^ and are not column equivalent and = F^r^ is 

not equal to P^ = FgFg ^. 

Proof: 

(a) Since T^ and T^ are column equivalent, there exists 

a nonsingular matrix X such that T^ = T^X. Thus R(T^X) = 

(T^XjJg, = T^fXJgX'l), and = XJgX"^ so and are 
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similar. Also ^2^2"^ = (F^X)(r^X)"! = F^xx"^r^~^ = 

(b) The first part is simply the contrapositive of the 

first part of (a). To prove the second part, suppose 

were equal to P^. Then F^ = F^X, where X = ^r2 which is 

nonsingular, Fg = F^X, and T^ = T^X. Thus T^ and T^ are 

column equivalent which contradicts the first part. Thus 

Pi ̂  Pg. Q.E.D. 

Thus to ensure that every solution in ̂  generates a 

unique P matrix, the solutions should be selected such that 

no two of them are column equivalent. According to the 

previous theorem, this is no problem for solutions corre­

sponding to nonsimilar J matrices since these solutions are 

necessarily nonequivalent, but the solutions corresponding 

to the same J matrix can be column equivalent. In fact 

when the R matrix is nonderogatory^ (and in some other cases 

as well), all of the solutions corresponding to a particular 

J matrix are column equivalent, so therefore only one of them 

needs to appear in-<£. This can be demonstrated by making 

the change of coordinates T = EX where X is described by 

(3.37-3.39). If R is nonderogatory then m^ = 1, and since 

^i — Pij each block in X is a regular upper 

triangular matrix of the general form 

^A matrix is defined to be nonderogatory if its minimal 
and characteristic polynomials are identical. This implies 
that a nonderogatory matrix has only one elementary divisor 
per distinguishable eigenvalue, and its Jordan matrix has 
only one block per distinguishable eigenvalue. 
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(i) _ 

^i 
b. 
1 °i 

0 ^i ^i 

0 0 ^i 

0 0 0 

(3.41) 

where the parameters a^, b^, ... are arbitrary except for 

the a^'s which must be nonzero since the columns of X are 

linearly independent. Furthermore^ all matrices of the form 

(3.41) are column equivalent to the cannonical matrix 

U 
(i) 

0 

1 

0 

0 

(3.42) 

so therefore it is sufficient to select the matrix 

T = E diag(u(l),...,u(^)) (3.43) 

as the only solution in S corresponding to J. On the other 

hand if R is derogatory, then the cannonical form of 

frequently depends on one or more arbitrary parameters. For 

example, suppose mu = 2 with r^^ = 2 and r^2 = 1/ and suppose 

n^ = 1 with Pil 
= 2, Then X 

(i) 
would have the general form 

(i) 

a. b. 
1 1 

0 a^ 

0 c. 

(3.44) 
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which is column equivalent to the matrix 

where is an arbitrary parameter equal to c^/a^. There­

fore in a case such as this, there are an infinite number of 

solutions in corresponding to the same J matrix, and as 

a result the quadratic matrix equation has a continuous 

spectrum of solutions rather than a finite set of isolated 

solutions. 

3. Equilibrium solutions of the covariance equation 

The equilibrium solutions of the time-invariant co-

variance equation are derived in this section and their 

properties are described. It is shown in part a that the 

equilibrium matrices satisfy a quadratic matrix equation 

whose coefficients are functions of H, M, and V. Thus the 

equilibrium solutions can be determined by applying the 

method of the previous section. The resulting R matrix has 

some special properties which are described in part b. In 

part c it is shown that the existence, symmetry, and definite 

ness of an equilibrium solution are uniquely related to the J 

matrix with which it is associated, and the effects of the 

stability, observability, and controllability of the random 

process are described. In part d it is shown that a 

1 0 

0 1 

*i 

(3.45) 
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posteriori equilibrium matrices also satisfy a quadratic 

matrix equation, and some interesting relationships between 

the solution of this equation and the quadratic matrix 

equation for the a priori equilibrium solutions are derived. 

a. Derivation of the quadratic matrix equation The 

equilibrium solutions of the covariance equation are obtained 

by algebraically solving for the matrices which satisfy the 

equation 

Pg = $[P^-P^M^(MP^M'+V)~^MP^] + H . (3.46) 

This equation can be converted to a quadratic matrix equa­

tion as follows: First by subtracting H, postmultiplying 

by ($'') and applying the identities (1.24, 1.28e), the 

equation 

(P -H) (*')"1 = $P (I+M'V~^MP )~^ (3.47) 
e e e 

is obtained. Then by postmultiplying by I + mV ^MP^ and 

subtracting OP^y the equation 

(P^-H) (4')~^(I+M^V~^MP^)-$P^ = 0 (3.48) 

is obtained. And finally by expanding and factoring (3.48) 

into standard quadratic form, the equation 

H(a3"l + [H(<I>^)~^M''V~^M+$]P^ 

- Pg($'')"^-P^[ ($^)"^M''V"^M]P^ = 0 (3.49) 
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is obtained. 

The solutions of (3.49) are obtained by applying the 

method of Section 2 with 

A = H($')"l 

B = H($') + $ 

C = -($')"! 

D = 

(3.50a) 

(3.50b) 

(3.50c) 

(3.50d) 

cind with the R-matrix equal to 

H($')"^M'^V~^M + $ H($')"l 

This matrix is equal to the product 

R = 

H 0 

0 (*') ^ M'V I 

(3.51) 

(3.52) 

and since each factor is nonsingular, R^ is nonsingular. 

It is possible that extraneous solutions may be intro­

duced when (3.47) is postmultiplied by I + m'v ^MF^. But 

by (3.50c,d) 

I + = ^'(DP^-C), (3.53) 
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and by the proof of Theorem 3.5, the matrix DP^-C is similar 

to J whose eigenvalues are nonzero since they are also eigen­

values of the nonsingular matrix. Thus I + M^V is 

nonsingular for every solution of (3.49) and no extraneous 

solutions are introduced. 

b. Characteristics of the R^ matrix The eigen­

values and eigenvectors of R^ have some special properties 

which are described in this part. Theorems 3.9 and 3.10 

describe a transformation property of the eigenvectors and a 

symmetry property of the eigenvalues which are true in 

general, and Theorems 3.11 and 3.12 describe some additional 

properties which apply if one or more modes of the random 

process are undriven or unobservable. In the following 

theorem, let E be a 2n-by-2n matrix whose columns are the 

eigenvectors of R^, let 0 be the Jordan form of R^, and 

let U and L be n-by-2n matrices equal to the upper and lower 

halves of E. 

Theorem 3.9: 

If 
u 

L 
transforms R^ into its Jordan form, ÇI, then 

transforms (R^*) ^ into Q. 

-U 
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Proof ! 

By hypothesis 

+ $ H($') 1 u U 

L L 
- _ — -

0 (3.54) 

Therefore by rearranging terms, the equation 

-($') L L 

H($^)~^m'V~^M + $ -U -U 
- « 

0 (3.55) 

is obtained, where the matrix on the left is (R^ ) . The 

conclusion follows by observing that the nonsingularity of E 

is also nonsingular. implies that 
-U 

Theorem 3.10: 

If is an eigenvalue of and is the 

associated Jordan block, then w^ = (uu*) ~ is also an eigen­

value of R and its Jordan block has the form 0. = w. I + N. 
P 1 ] ] 

with Nj = N^. (N^ and N^ supply the superdiagonal I's in 

the Jordan blocks). 

Proof: 

Let = "i 

^i 

be the Jordan vectors associated with 

Then by the proof of Theorem 3.9. 
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and therefore 

L. L. 
1 1 

-U. -U. 
1 1 

_ - L. J 

"i 
(3.56) 

[Li* -%!*] . (3.57) 

* —1 1 * -1 
But (S2j^ ) is similar to (w^ ) I + N^, so there exists a 

nonsingular matrix X such that 

XEL^* -Ui*]Rd = { (w/)"^I + Ni}X[Li* -U^*] . (3.58) 

*  — 1  Thus wj = (co^ ) is also an eigenvalue of and Wjl + 

is a block in ^ associated with wj. Furthermore, it is the 

only block associated with w^ since if there were another, 
*  _ i  

say CO. I + N, , then (w . ) I + N, would be an additional 
3 K ] K 

block associated with co^, which violates the original assump­

tion on + N^. Thus Nj = and the theorem is proved. 

It should, however, be mentioned that when is on the unit 

circle, then w^ and are the same eigenvalue and co^I + 

is the same diagonal block as + N^ . Q.E.D. 

This theorem implies that the eigenvalues of have 

polar symmetry, i.e., each eigenvalue, w = re-" , has an 

* —1 —1 i6 image, (w ) = r e , with respect to the unit circle. 

Thus Rp is an exponential function of a matrix whose eigen­

values are images with respect to the imaginary axis, similar 

See Appendix B. 
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to the rectangular symmetry of R^. Because of this and the 

form of (3.52), it would seem reasonable for the matrix 

to be equal to the expression 

exp 

y*-

H 

0 -A M V~^M 0 

= exp 

\ 
M V~^M 

H 

-A 

(3.59) 

where A = ln($), but numerical examples show that this is not 

X+Y X Y 
true. The reason for this is the fact that e ^ e e unless 

X and Y commute. Thus R^ is not equal to (3.59) since the 

matrices in it do not usually commute. 

Theorem 3.11; 

If a mode, whose eigenvalue is X, is either undriven 

* —1 or tinobservable, then X and (X ) are eigenvalues of R^. 

Proof : 

By Appendix C, 

(3.60) 

and 

HN^ = 0 , (3.61) 

where the columns of are basis vectors of rj (R^) and is 

a Jordan matrix whose diagonal elements are equal to the 
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eigenvalues of the undriven modes. Similarly, 

™o = (3.62) 

and 

MNq = 0, (3.63) 

where the columns of Nq are basis vectors of n(P^) and Aq 

is a Jordan matrix whose diagonal elements are equal to the 

eigenvalues of the unobservable modes. The equations 

and 

• 
1 

o
 1 1 o

 
t 

Nd ^d 
M 

[«a* = Aa'Kd* 

are implied by (3.60), (3.61), and the equations 

and 

1 
o
 

"
 •
 

o
 

i 

0 0 

10 No*]Rp = [0 Ng"] 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

are implied by (3.62, 3.63). Therefore if the mode is un­

driven, X is a diagonal element of and (3.64, 3.65) imply 

* —1 that X and (X ) are eigenvalues of R^; if the mode is un­

observable, then X is a diagonal element of AQ and (3.66, 
* -1 

3.67) imply that X and (X ) are eigenvalues of R . 
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Theorem 3.12; 

The Rp matrix has an eigenvalue on the unit circle if 

and only if the random process has a random walk mode which 

is either undriven or unobservable. 

Proof: 

let 

Let 0) be an eigenvalue which is on the unit circle and 

f 
be the corresponding eigenvector. Then f and y 

1 

satsify the equations 

$f = w(f - Hx) (3.68) 

M'v~^Mf = - 1 / (3.69) 

and since w*w =1, (3.68) is equivalent to 

Hy = f - w*$f . (3.70) 

Next if (3.69) is premultiplied by f* and (3.70) is pre-

multiplied by ;y* and transposed, the equations 

f*M'v~^Mf = wf*$\ - f*Y (3.71) 

Y*Hx = f % - tof (3.72) 

are obtained, which imply that 

f*MV~^Mf + x*Hx= 0 . (3.73) 

/ -1 
Thus since both M V M and H are nonnegative definite, 

Mf = £ and =0, and (3.69, 3.70) imply the equations 
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= w 2 (3.74) 

% = wf (3.75) 

respectively. Therefore, since Y and f can not both be 

zero, the random process has a random walk mode which is 

either undriven or unobservable. 

This is a simple application of the previous theorem. 

c. Existence, symmetry, and définiteness of the 

equilibrium solutions The first five theorems in this 

section show that the existence, symmetry, and définiteness 

properties of an equilibrium solution are related to the J 

matrix with which it is associated. Some of these theorems 

do not apply when the matrix is derogatory. This occurs 

most commonly when there is a random walk mode which is both 

undriven and unobservable, but it can also happen when the 

random process has two modes whose eigenvalues satisfy the 

* 
equation = 1 and one of them is undriven and the other 

is unobservable. In such cases, the existence, symmetry, 

and definiteness properties must be determined by direct 

evaluation of the equilibrium solutions. These cases, how­

ever, are the exception rather than the rule. 

In the first theorem, some conditions which are suf­

ficient to prevent the existence of an equilibrium solution 

due to a singular r matrix are listed. Although no proof 

is given, these conditions are believed to be necessary as 
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well as sufficient since no exceptions in over 300 numerical 

solutions have occurred. 

Theorem 3.13: 

When the matrix is nonderogatory, r is singular if 

(a) there is an eigenvalue in J equal to an eigenvalue of 

Aq, or (b) there is an eigenvalue in (Aq ) ̂  which is not 

an eigenvalue of J. 

Proof: 

(a) Let X. be an eigenvalue of both J and A^. Then by 

(3.66)/ there is a column of T proportional to 
Ï^O 

, where 

is an element of n), since the subspace of solutions 

to the equation R 
"f " 'f ' 

o
 

II 

X 

o
 

II 

Y 
is one dimensional when 

Rp is nonderogatory. Thus r is singular since one of its 

columns is zero. 

* —1 * 
(b) Let (XQ ) be an eigenvalue of (A^ ) which is 

not an eigenvalue of J. Then by (3.67), the equation 

to* 
F 

r 

, * * 
= [0 Sg] 

F 

r 
(3.76) 

is equivalent to the equation 

* * _i * r(J - ( XQ )  -^I) =  0 , (3.77) 

* * * 
which implies that n^ T = 2 since J - (X* ) I is non-

* -1 
singular if (Xq ) is not an eigenvalue in J. Thus P is 
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singular since it has a null row vector. Q.E.D. 

The following theorem lists in a similar manner the 

conditions which result in a singular F matrix. 

Theorem 3.14: 

Let be the eigenvalue of an undriven mode. When 

* —1 is nonderogatory, F is singular if (a) ) is an eigen­

value in J, or (b) is not an eigenvalue in J. Further­

more if = FF ^ exists, it is singular and P^n^ = C[ in 
* * 

case (a) and n^ P^ = ̂  in case (b)/ where is the eigen-

/ * vector of $ in n(R^) corresponding to X^ . 

Proof: 

(a) Suppose the ith element on the diagonal of J is 

*x-l equal to (X, ) Then by (3.64) and the assumption that 

Rp is nonderogatory, the ith column of T is proportional to 

. so F is sinaular since it has a zero column. Also 

"  [ f 3 _ / . - . / 0 ,  —  / . . . 2 ^  

—  [  f 2 f ^ ]  

(3.78) 

= 0 

where the elements 0^, n-, and 1 occupy the ith position in 
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,-1, F ,  V f  and T  ^ respectively. 

(b) By (3.65) the equation 

t2a* 0*1Rp 
F 

r 
= [r^ 0 ] 

F 

r 
(3.79) 

is equivalent to the equation 

^ F(J-Xjl) = 0 , (3.80) 

which implies that if is not an eigenvalue in J, then 
* * 
^ F = 0^ and F is singular. Also if r is nonsingular, then 

Q.E.D. 
* * _i * 

aa Pg = lb rr = i 

The following two theorems describe how the symmetry of 

an equilibrium solution is determined by its associated J 

matrix. In these theorems, and denote the ith 

distinct eigenvalue of J and 0 respectively and the integers 

Pil > •< 

of the simple Jordan blocks in J and ÇI which are associated 

with ith eigenvalue. Also it is assumed that the eigenvalues 

in Q are ordered such that w. = . . 

> p- and r., > ... > r. denote the dimensions 
— li — — i,m^ 

Theorem 3.15; 
* 

An equilibrium solution is Hermitian if (a) / 1 for 

any two eigenvalues in J (i=j not excluded) , or (b) p^^^ ^jl 
* 

< r. for every (i, j) pair for which ip. = 1. 
X / X J 
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Proof : 

By (3.11, 3.12, 3.14), = FF where 

F 

r 

F 

r 
J . (3.81) 

Also by (3.54), 

F u 

r L 
(3.82) 

where X is a 2n-by-n matrix which satisfies the equation 

nx = XJ . (3.83) 

* 
Let Q = r F; then Q is Hermitian if and only if 

* * * 
Q - Q = r F-F r 

* * * 
= X (L U-U L)X 

= 0 . (3.84) 

By premultiplying (3.54) by and taking the conjugate 

transpose of (3.55), it can be seen that 

* * * * * 
L U-U L = 0 (L U-U L)S2 , (3.85) 

and since 5 = diag(0^,...,0^) where is the set of Jordan 

* * 
blocks associated with L U-U L can be partitioned into 

blocks which satisfy the equation 
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"uv = • (3-8S' 

When ^ 1, the only solution to (3.86) is = 0. 

Also since J = diag(J^,.../J^), X can be partitioned into 

blocks X^j which satisfy the equation 

O.X.. = X..J. (3.87) 
1 ID 1] ] 

whose only solution when w. ̂  is X.. = 0. Finally, 
X J 1J 

* 
Q - Q can be partitioned into blocks 

= X..*W..X.. , (3.88) 
XI 1] ]] 

* * 
which are all zero when t|). ^ 1. But Q = F P F which 

1 J e 

is Hermitian if and only if is. Thus under the conditions 

of part (a), P^ is Hermitian. 
* 

Now suppose Tj>j = 1, Since is the direct sum of 

the r^^-dimensional, simple Jordan blocks can be 

partitioned into blocks , with dimensions r^^-by-r 

which satisfy the equation 

"ûv"'' = <3.89) 

and consequently have the form 
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0 

0 

* 

0 

* 

* 

* 

or = 

0 

* 

* 

* 

> ^jv 

0 0 

0 0 

0 * 

^iu " ̂ jv ' 

(3.90) 

where the asterisks indicate nonzero elements. Also since 

is the direct sxim of the p^^-dimensional, simple Jordan 

blocks (and Xjj) can be partitioned into r\^-by-p^^ 

dimensional blocks of the form 

X (i,i) = 
uv 

a b c  

0 a b 

0 0a 

0 0 0 

^ Piv 

or = 

0 a b c 

0 0 a b 

0 0 0 a 

^ Piv 

(3.91) 

where a, h, c, ... represent arbitrary parameters. Thus 

Q^j is composed of P^^-by-pjg dimensional blocks of the 

form 

m. m. 
- y ,„(i,i) s* (i, j)„(j ,j) 

a* " v!l v!l %v6 

The (u/v)th term in (3.92) is zero if 

(3.92) 

+ min(rj^,Pjg) <_ max(r^^,rj^) . (3.93) 

Since p.^ > p.r.^ > r.^ , r> r. 
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Pje 1 Pjl' Pil + Pjl i fim. = fjm.' (3-93) 
^ 3 

every term in (3.92). Thus, every block in Q^j is zero, and 
* 

if this is true for every (i,j) pair, then Q - Q =0 and 

P is Hermitian. 
e 

Theorem 3.16: 

An equilibrium solution is symmetric if (a) ^ 1 

for any two eigenvalues in J, or (b) p^^ Pji £ ̂ im. 

every (i, j) pair for which = 1. 

Proof : 

The proof is identical to the previous proof except 

that all conjugate transposes are replaced by ordinary 

transposes and all complex conjugates in scalar equations 

* 
such as = 1 are deleted. 

An obvious corollary of the preceding two theorems is 

the fact that P^ is real and symmetric if J satisfies the 

conditions of both theorems. Although these conditions are 

sufficient but not necessary, numerical examples indicate 

that exceptions occur only when is derogatory. The next 

theorem describes the relationship between the definiteness 

of an equilibrium solution and its corresponding J matrix. 

Theorem 3.17; 

When Rp is nonderogatory, a Hermitian equilibrium 

solution is nonnegative definite if and only if each eigen­

value in J is either (a) greater than one in absolute value. 
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or (b) equal to the conjugate reciprocal of the eigenvalue 

of an undriven mode. 

Proof: 

Let the diagonal blocks in J be arranged such that 

J = diag(Ji, (3.94) 

where the eigenvalues in are greater than one in absolute 

* -1 value and each eigenvalue in J2 is an eigenvalue of (A^ ) 

Also let T be partitioned such that 

R 

^1 ^2 

^1 ^2 

^1 ^2 

^1 ^2 

Jl 0 

(3.95) 

where Fg = 0 since when is nonderogatory, (3.64) implies 

that 

r -1 -1 

^2 0 

^2 ^d_ 

X (3.96) 

* —1 where X satisfies the equation (A^ ) X = XJ^. Therefore 
* 

since Q = r P^r and P^ is Hermitian, Q has the form 

Q = 
Oil 0 

(3.97) 

where F^. Let G be the matrix 
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g = 

/ -1 
i m v m m''v 0 

0 ^ 
/ —1 

m v m i 

(3.98) 

which is Hermitian, nonnegative definite. Then by (3.50, 

3.95), 

- Oil = [Fi* ri*]G >  0 ,  (3.99) 

and therefore ^ 0 since the eigenvalues of are 

greater than one in absolute value. Thus Q and are also 

nonnegative definite. 

-»• Let P^ be Hermitian, nonnegative definite. By (3.10), 

(DPg-C) P^(DP^-C) - Pg = R (3.100) 

where R denotes the matrix 

DB 

r = [pg i] 

* 
d a 

* * 
-C B-I -C A 

(3.101) 

By (3.50, 3.98), R is also equal to 

r = [p^ i] g (3.102) 

which implies that it is nonnegative definite. By (3.20), 

the matrix DP^-C is related to J by the equation (DP^-C)r=rJ. 

Therefore let be an eigenvector of DP^-C and let \{j be the 

corresponding eigenvalue. Then by pre- and postmultiplying 

"See Appendix B. 
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* 
(3.100) by % and y_, the equation 

(ip ip-Dy P^_ = Y RY (3.103) 

is obtained. This equation implies the conclusion in one 

of three ways: 
* * 

(a) If % ^ 0 and y RY >0, then 

* % 
Tp ij; = 1 + —J (3.104) 

1 PgY 

which implies that | ip | > 1. 

* * , , 
(b) If Y PgY > 0 and y RY =0/ then |^| =1 and the 

equations 

M^v'^MP Y = 0 (3.105) 

H($^)"\ = 0 (3.106) 

are implied by (3.98, 3.102). Also since y is an eigen­

vector of DP^-C, (3.50, 3.105, 3.106) imply the equations 

(3.107) 

HY = 0, (3.108) 

so the random process has a random walk mode which is un-

driven. 

* * II (c) If X = X RY = 0, then | | may have any value, 

but (3.105-3.108) still apply. Thus (li; ) ̂  is equal to the 

eigenvalue of some mode of the random process which is 

undriven. Q.E.D. 
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If R is derogatory/ then in (3.95) is not necessarily 
P ^ 

zero, so the conditions of the previous theorem become 

necessary but not sufficient for to be nonnegative defi­

nite. However, if all of the eigenvalues in J are greater 

than one in absolute value, then is nonnegative definite 

because Q = whose definiteness does not depend on R^ 

being nonderogatory. 

Some of the exceptions to the previous theorems that 

occur when R^ is derogatory are illustrated by the following 

numerical example. 

Example 3.1: 

The random process has a stable mode = 0.5) which is 

driven and unobservable and an unstable mode (Xg = 2) which 

is undriven and observable. The $, H, M, and V matrices 

are 

$ = 
-1 

1 
2 

H = (3.109a,b) 

M = [-1 2/3] V = 1, (3.109c,d) 

and the R matrix is 
P 

2 -1 8 12 

0 1/2 12 18 

1/2 -1/3 1/2 0 

1/3 2/9 1 2 

(3.110) 
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The Jordan form of is 

n = diag(2, 2. 1/2, 1/2), (3.111) 

and the corresponding matrix of eigenvectors is 

E = 

8 25 0 2 

12 24 0 3 

0 3 3 0 

1 0 -2 0 

(3.112) 

and since there are two blocks in ̂  associated with each 

distinct eigenvalue, is derogatory. The permissible J 

matrices are = diag(2, 2), = diag(2, 1/2), and 

= diag(l/2, 1/2). 

Even though R^ is derogatory, all of the solutions of 

R T = TJ are column equivalent, so there is only one 
p a 

equilibrium solution. 

P = 

25/3 

12 

(3.113) 

corresponding to J^. As expected, this solution is real 

and symmetric since meets the conditions of Theorems 

3.15 and 3.16, and it is nonnegative definite since both 

eigenvalues in are greater than one in absolute value. 

The solutions of R^T = TJ^ are not all column equivalent, 

so therefore there is family of equilibrium solutions. 
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16/3 8 2/3 0 2/3 1 4/3 2 

= + X + y - |-xy 

8 12 1 0 0 0 2 3 

(3.114) 

corresponding to . These solutions exist even though 

there is an eigenvalue in equal to the eigenvalue of an 

unobservable mode, and some of these solutions, specifically 

^ = 

are real symmetric even though does not satisfy the con­

ditions of Theorems 3.15 and 3.16. The Q matrix correspond­

ing to solutions (3.115) is 

27(36 + x^) 27x 

Q = (3.116) 

27x 0 

which shows that although positive, the Q matrix as 

* * 

a whole is indefinite because the Fg and terms are 

nonzero. Thus although satisfies the conditions of 

Theorem 3.17, the corresponding matrices are not 

necessarily nonnegative definite. 

The solutions of R T = TJ are all column equivalent to p c 

a matrix whose F part is singular, so there is no correspond­

ing equilibrium solution. This case, therefore, conforms to 

8 + x - I" x^ 

8 + X 

(3.115) 

12 - J 
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Theorem 3.13. 

The results obtained thus far indicate the following 

general conclusions: If there are no random walk modes in 

the random process which are either undriven or unobservable, 

then half of the eigenvalues of are inside the unit circle 

and half are outside. Thus one of the permitted J matrices 

has eigenvalues which are all greater than one in absolute 

value, and the corresponding equilibrium matrix, if it 

exists, is symmetric nonnegative definite. The existence of 

this matrix is quite important since, as will be shown in 

Section 4, this is the only stable equilibrium. Theorem 3.13 

implies that this matrix does not exist if there are any un­

stable modes in the random process which are unobservable, 

but does not imply that it exists if there are no such modes. 

However by taking advantage of the fact that the eigenvalues 

of J are outside of the unit circle, it can be shown that 

this condition is both necessary and sufficient. Theorem 

3.14 implies that this equilibrium matrix is positive semi-

definite if the random process has a stable mode which is un­

driven, and examples indicate that it is positive definite 

if there are no such modes. Theorem 3.17 implies that other 

nonnegative definite equilibrium solutions are possible only 

if the random process has one or more unstable modes which 

are undriven. These solutions are obtained by replacing the 

eigenvalue of the unstable mode by its conjugate reciprocal 
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in J. Theorem 3.14 implies that these solutions are positive 

semidefinite. It is therefore expected that the solution 

corresponding to the J matrix whose eigenvalues are all 

outside the unit circle should be "more positive" than any 

of these solutions, and this is shown to be true in Theorem 

3.19. 

If the random process has a simple random walk mode 

which is undriven but observable, then has a 2-by-2 Jordan 

block whose eigenvalue lies on the unit circle. The J matrix 

can therefore have at most n-1 eigenvalues outside the unit 

circle and one on the unit circle. The corresponding 

equilibrium solution is real and symmetric since J satisfies 

Theorems 3.15 and 3.16, and by Theorems 3.14 and 3.17 it is 

positive semidefinite. On the other hand, if the random 

process has a simple random walk mode which is driven and 

unobservable, then again has a 2-by-2 Jordan block whose 

eigenvalue lies on the unit circle, but by Theorem 3.13 

there is no equilibrium solution corresponding to the J matrix 

which has one eigenvalue on, and the rest outside of, the 

unit circle. When there is a simple random walk mode which 

is both undriven and unobservable, then R^ is derogatory 

with two 1-by-l Jordan blocks associated with an eigenvalue 

on the unit circle, and there is a continuous spectrum of 

equilibrium matrices which can be positive definite, positive 

semidefinite, or indefinite. When the random process has a 
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multiple random walk mode which is undriven and/or un-

observable, the situation becomes quite complex and is best 

studied by direct solution of the quadratic matrix equation. 

The following theorem establishes necessary and suffi­

cient conditions for T to be singular when the eigenvalues in 

J are outside of the unit circle. 

Theorem 3.18; 

If the system has no undriven or unobservable random 

walk modes such that the equation 

+ $ H($') ^ 

(3.117) 

has a solution with linearly independent columns when all 

the eigenvalues in J are greater than one in absolute value, 

then r is singular if and only if the system has an unstable 

mode which is unobservable. 

Proof ; 

-t-If the system has an unstable mode which is unobser­

vable, then there exists a vector v such that 0v = Xv 

with IXI >1, and Mv = Q_. Therefore v = (X )~^v and 

by the lower half of (3.117) 

v* r  (J- ( X*)"^I) = 0 . (3.118) 
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* -1 
Since the eigenvalues of J are outside of and (X ) is 

* —1 *  
within the unit circle, J - (X ) I is nonsingular, so v 

is a null row vector of T. 

-> Let n be a null vector of T. From the lower half of 

(3.117) 

(M'^v'^MF + r)J~^ = , (3.119) 

* * _i * 
and by premultiplying by n (J ) F and postmultiplying by 

n, the equation 

* * _i * / _i —1 * * _i * —1 
n (J ) -^F (M V •^M)FJ S + n (J ) (F r)J ^n = 0 (3.120) 

* 
is obtained. Theorems 3.15, 3.16, and 3.17 imply that F r 

is real, symmetric, and nonnegative definite since all of 

the eigenvalues in J are outside of the unit circle. Thus 

since M V M is also nonnegative definite, both terms in 

(3.120) must be zero, so MFJ ^n = 0^. Thus by postmultiplying 

(3.119) by n, it can be seen that J n is also a null vector 

of r. This argument can be repeated indefinitely to show 

that every vector of the form J ^n is a null vector of both 

r and MFJ . Thus by Appendix B, there is a vector 

ve{n, J ^n, ...} such that J ^v = Xv with | X| < 1, Tv = 0^, 

and MFv = 0^. Now by postmultiplying the top part of (3.117) 

— 1 
by J V, the equation 

0 (Fv) = x"^(Fv) (3.121) 
Pf" 

is obtained. Finally, Fv 5^ 0 since the columns of are 
j_r_ 

linearly independent. Thus there is an unstable mode which 
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is unobservable because Fv is and eigenvector of whose 

corresponding eigenvalue is outside of the unit circle, and 

it is a null vector of M. Q.E.D. 

The following theorem shows that the effect of replacing 

an eigenvalue of J, which is equal to the eigenvalue of an 

undriven unstable mode, by its conjugate reciprocal is to 

make the corresponding equilibrium solution less positive 

definite. 

Theorem 3.19: 

If is equal to the eigenvalue of an unstable mode 

which is undriven and observable, and if P ^ and P , are ea. eb 
Hermitian nonnegative definite equilibrium solutions of 

the covariance equation associated with the Jordan matrices 

J^ = diag(#^,#2' (3.122) 

J^ = diag((^^ ) (3.123) 

respectively, then P^^ ̂  P^j^ . 

Proof ; 

The equilibrium solutions P^^ and P^^ are equal to 

= t£a'i2 £n"la'X2 <3-124) 

^eb = Vb'^ = '3.125) 

respectively where the vectors f^ and satisfy the equation 
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4 4 ̂2 ••• 

la lb X2 ••• In 

-a 4) -2 

Xa lb 12 In 

* \ "1 diag(^^,(^i^^ ) ... 4^). (3.126) 

Therefore 

C'^ea-^eb'^a = C<[£a'£2 

" ^^2 ' ' * * '^'^b'^2 '* • * 'Yn.] ^^"Ya'^2' * ' * ^ 

%2 

In 

^-a"^ebXa'-' " d 0 ... 0 

0  0  . . .  0  

0 0 0 

(3.127) 

where d = y (f -P ,Y ) . By (1.25, 1.28e), 
& • '•cL GD â 

^eb = GPeb'I + MV^MP^)"^Î'+ H , (3.128) 

and by (3.126) 

'i'lXa = (<Î'^)~^(M''V"^M^ + Y^) 

= ^l^la + % 

(3.129) 

(3.130) 
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Thus^ 

(^1^1 - l)d 

= (f^*MV^M+Y^*) (M V~^MPgjj+I)"^ (M v"^Mf^+Xa) } 

^ —a Xa ̂ eb^a 

= (la*-ïa\b>"''M'eb"'+^>"^"<£a-^ebïl> ' '^.ISX) 

The right side of (3.131) is nonnegative because ^ 0 

2 * and V > 0. Therefore since - 1 is positive, d is also 

nonnegative, which by (3.127) implies that ^ ̂eb* O'^.D. 

The final theorem in this section demonstrates that any 

nonnegative definite equilibrium solution is singular when 

the random process has a stable mode which is undriven. 

This fact is implied by Theorems 3.14 and 3.17 when is 

nonderogatory, but as the following theorem shows, it is 

not restricted to such cases. 

Theorem 3.20; 

If Pg is nonnegative definite and the system has a 

stable mode which is undriven, then P^ is singular. 

^The matrix inversion lemma and the identity 

M''(MPM'+ V)~^M = M'V~^M - M^v'^MP (M^'v'^MP + I)~^M''V~^ M 
must be used to obtain the final form of (3.131). 

2 ̂Numerical examples seem to indicate that the matrix 
(MPgM +V) is positive definite for all equilibrium solutions 
of the covariance equation. If this can be shown to be true 
in general, then the restriction that i}»! be equal to the 
eigenvalue of an undriven unstable mode can be dropped. 
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Proof ; 

By Appendix C there exists a vector ̂  such that 

<E» '5^ = ^ with < 1 and Hn^ = 0_. Therefore 

n,*P = n.*[$[P -P M^(MP M^+ V)"^MP^]$ + H}i^ 
e^^ e e e e —d 

^ (^d*^d)^^* [P^-P^M''(MP^M''+ V)~^MP^]n^ (3.132) 

and 

(i-^d*^a)Sa*^eSd = ^"^e2d • 

(3.133) 

Now since IX, I <1 and P >0/ the left side of (3.142) • Q 1 g 

is nonnegative and the right side is nonpositive, so both 

sides are zero. Thus P^ is singular and ̂  is one of its 

null vectors. 

d. The a posteriori equilibrium matrices All of the 

results derived thus far in Section 3 apply to the a priori 

equilibrium matrices, P^. The a posteriori equilibrium 

matrices, Q^, and their properties can be derived from the 

equations : 

= P^-P^M ̂(MP^M^+ V)~^MP^ (3.134a) 

= P^(M^V~^MP^ +1)"^ (3.134b) 

= (PgM''v"^M + (3.134C) 

= (I-K^M)Pg(I-M^K^ ) + K^VKj (3.134d) 
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and 

P = $Q $ + H 
e e 

(3.135) 

where = P^M^(MP^M^+ V) Equations (3.134a/ 3.135) 

imply that is symmetric if and only if is symmetric, 

(3.134d, 3.135) imply that is nonnegative definite if 

and only if P^ is nonnegative definite, (3.134c) implies 

that the null spaces of and P^ are identical, and (3.134a) 

implies that ^ P^ whenever MP^m''+ V is positive definite. 

A quadratic matrix equation for can be obtained 

from (3.134b) by postmultiplying by (M^V ^MP^ + I) and 

replacing P^ by the right-side of (3.135): 

H($^)"^ + - Qg (MV~^MH+I) (^'')"^- = 0. 

(3.136) 

The solutions of this equation are given by where 

(3.137) 

and 

$ H($') ^ 

(M'V~^MH + !)(*') 1 

(3.138) 

which can be factored into the product 
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/ -1 
M V M I 

H 

($')"-

(3.139) 

Also, Rp and R^ are related by the equation 

®q = 
/ —1 

M V M -M V 

(3.140) 

so they are similar and have the same Jordan matrix, ̂ . 

Furthermore, if and are related by (3.135), then the 

Jordan matrices J and J are similar. This results from p q 

the identity 

<°p^e - =pl:p = TpJp ' (3.141) 

which by (3.50, 3.135) implies the equation 

a/ + H) + I]r_ = a'r_J 
e p p p 

(3.142) 

and from the identity 

= fq^q ' (3.143) 

which by (3.138) implies the equation 

[M^V"^M(<Î>Q^<Î>^+ H) + !](*') = PgJg (3.144) 

Therefore by (3.142, 3.144), 

(3.145) 
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which implies that J and J are similar. In fact, J and 
P <3 P 

Jg are identical if their eigenvalues are arranged in the 

same order. 

4. Stability of the time-invariant covariance equation 

a. Local stability In this section, the behavior 

of the covariance matrix in a suitably small region around 

an equilibrium solution will be examined. The covariance 

equation can be converted to a more suitable form for this 

purpose by following the same procedure as was used to ob­

tain (3.49). The resulting equation is 

A + BPk + = ° ' (3.146) 

where A, B, C, and D are the n-by-n matrices defined by 

(3.50). Since this involves a postmultiplication by 

/ —1 
I + M V MP^, there may be sequences which satisfy the 

above equation which do not satisfy the original covariance 

equation due to I + M'^V being singular for some value 

of k. However, the following theorem shows that this can 

happen only if the sequence which satisfies the original 

covariance equation terminates due to a singular MP^M^+ V 

matrix. 

Theorem 3.21: 

If V is nonsingular, then MPM''+ V is singular if and 

only if I + m''v ^MP is singular. 
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Proof; 

The proof is based on the identity 

(I + = MV~^(MPM^+ V) . (3.147) 

^Let X be a null vector of MPM''+ V and let ^ = M 'x. 

Then MP^ + Vx = £, and since V is nonsingular, ^ cannot be 

The conclusion is obtained by postmultiplying (3.147) 

by x: 

(I + M^V"^MP)2 = M''V"^(MPM^+ V)X = 0. (3.148) 

y / — 1 
-«-Let V be a null row vector of I + M V MP and let 

w^ = v^'m^'v Then v"^ + w'^MP = 0_'^/ which implies that w 

cannot be 0^. The conclusion is obtained by premultiplying 

(3.147) by v^ 

w'(MPM'+ V) = v^(I + M^V~^MP)M^ = 2^. (3.149) 

Q.E.D. 

/  — 1  Also since det(I + M V MP^) is a continuous function 

/  — 1  of the elements of P, and since I + M V MP is nonsingular ic e 

for every equilibrium solution of the covariance equation, 

there must be a region around every P^ for which the matrix 

I + M V MPj^ is nonsingular. Thus (3.146) is suitable for 

studying the local stability of an equilibrium solution. 

Now let Pj^ be replaced by P^ + in (3.146). Then Uj^ 

satisfies the difference equation 
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^k+l = - PeD)%k[(DPe-C) + D*k] 
-1 (3.150) 

Intuitively it can be seen that if is small enough, then 

the stability of (3.150) is determined by the stability of 

the linearized equation 

Since the Jordan forms of B-P D and DP -C are K and J 
e e 

respectively, and since the eigenvalues in K are the con­

jugate reciprocals of the eigenvalues in J when P^ is 

Hermitian, (3.151) is stable if all of the eigenvalues in 

J are outside of the unit circle, and it is unstable if any 

eigenvalue in J is inside the unit circle. The following 

two theorems show that (3.150) is stable or unstable under 

the same conditions. 

Theorem 3.22; 

If all of the eigenvalues in the J matrix associated 

with an equilibrium solution are outside of the unit circle, 

then any Pj^ matrix starting sufficiently near P^ approaches 

P as e 

Proof; 

Let Uj^ = L^R^. Then and satisfy the difference 

equations 

-1 (3.151) 

(3.152) 
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^+1 " Rk[(DP^-C) + • (3.153) 

Let S be a symmetric, positive definite matrix such that 
* 

T = (DP^-C)S(DP^-C) -S > 0/ let the norm of a vector 

be defined as ||x||^ = x Sx, and let the norm of be 

defined as 

I I R ^ I I  =  m a x  I 1 R v * X | |  •  ( 3 . 1 5 4 )  
1 1 x 1 1 = 1  

Let Y. - [ (DP^-C) + Uj^ D ] x; then 

[(DP^-O* + = R^x . (3.155) 

Note that 

1 I (DP^-C)\l \  ̂ = -̂  (DP^-C)S(DP^-C)\ 

= Y. + Z ' (3.156) 

so therefore 

I  I  (DP^-C) * y l  1  >  a l  | y |  | (3.157) 

where a  > 1. Also 

* * * * * * * Tf. * 
° % = *k ̂ 0 -D P^ )^D Y (3.158) 

and 

* * * k 
(B -D P^ ) 0 as k ̂  00, so 

1 1U^*D\| I < Y-1 1^3,1 1 -1 Izll (3.159) 

where y = Sj|Lq[]•[|d[| and B is a positive number such that 
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I I (B-PgD)^l 1 _< B for all k. Therefore if 

l'|R]^l I < / (3.160) 

then 

1 1 [(DP^-O* + Uj^V]Y.| 1 1 (a-Yl IR^I I) I Izl I = «1 Izl I 

(3.161) 

where 6 > 1, and by (3.155) 

I  | y |  I < I I (3.162) 

for all X. But 

|Rv+iI I = max W z W '  (3.163) 
^ X =1 

so 

1 iRjc+lI I 1 G"! I |R^| 1 . (3.164) 

Thus both and approach 0 as k-^, so also vanishes, 

This proves the convergence of to P^. Note that if 

IIUqM = ||Lq||-11Rq1|, then by (3.160) 

l l U n l l  <  
m o t i  •  

Theorem 3.23; 

If the J matrix associated with an equilibrium solution 

has an eigenvalue within the unit circle, then there are P^ 

matrices starting arbitrarily near P^ which diverge from P^. 
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Proof: 

By utilizing the identity^ 

(DPg-C)"l = (B-P^D)* , (3.165) 

Equation (3.150) can be written as 

= (B-PgD)U%(B-PgD)*[I+DU%(B-PgD)*]"l . (3.166) 

Under the conditions of the hypothesis, B-P^D has an eigen­

value, u, outside of the unit circle. Let v be the 

* 2 * 
corresponding eigenvector with v v = 1. Let Uq = S vv where 

6 is a real/ arbitrarily small, positive number. Then 

"k = "here 

^ (3.167) 

and 

rj^^3_ = [I + (B-PgD)U%*D*]"l(B-PgD)r% (3.168) 

with r« = ÔV. Suppose 
—u — 

r. k 
r .  =  5  ^ V  ,  ( 3 . 1 6 9 )  

1 + |w|2 + ... + |w|2k 2) -

* * 
where a = v D v. Then insertion of (3.167, 3.169) into 

(3.168) results in the equation 

^This identity is derived as follows: 

(B-P^D)* = $ - M'v~^M$~^(Pg-H)= [I-M'V'^MP^(M'V~^MP^+I)~^]§ 

= (M^v'^MPg + 1)"^$'= (DP^-C)~^$. 
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f^k-1 
w (3.170) 

1 + sVd + |W|2 + ... + |M|2k-2) -

where 

w = CI + V v*D*riv . 
1 + s^watl + |w|2 + ... + |w|2* 2) - -

(3.171) 

Premultiplication by the bracketed term in (3.71) results in 

the equation 

ô ^ U 1 U I D  x )  
w + = 5 7 V = V (3.172) 

1 + ô^iiad + lui + ... + iu| ) 

which implies that 

« . 1 + l»!^ + ••• + V (3.173) 
1 + S^uad + |y| + ... + lui ) 

and 

r. k+1 
r, . , = 5 ^^ V . (3.174) 

1 + 6  u a ( l +  | u |  +  . . .  +  l u j  )  

Furthermore, a similar analysis shows that (3.169) is true 

for k = 1, so by induction it is true for all k ̂  1. Thus 
* 

^k ~ ̂ k— — 
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Instability can now be proved by observing that: 

a ^ 0 and 

(a) if 

In (-

n > 

-) 

then 

106^ UÇt 
2 In ut 

1 12 
. 1^ • - 1 

(3.176) 

11*Ipa| 

or (b) if a = 0 and k ̂  21n^fu I ^ ^ E. 

(3.177) 

Q.E.D. 

If J has one or more eigenvalues on the unit circle, 

with the remainder outside of the unit circle, then there 

is no particular advantage in making a local stability 

analysis because the nearness of to does not make the 

analysis any sinkier than a global stability analysis. 

b. Global stability In this section, a discrete 

analogue of Potter's [13] global stability theorem is stated 

and proved. The conditions imposed on the random process in 

this theorem are probably the most realistic in terms of 

an actual implementation of the Kalman filter, but in terms 

of a stability analysis, a relaxation of these conditions 

leads to more interesting properties. The author has 

investigated several ways of analyzing the stability of the 

covariance equation under such conditions. The results of 

this investigation and some speculations based on numerical 
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examples are stated after the proof of the following theorem. 

Theorem 3.24: 

If all unstable and random walk modes are both driven 

and observable and if Pq is symmetric nonnegative definite, 

then approaches the P^ whose corresponding J matrix has 

all of its eigenvalues outside of the unit circle. 

Proof; 

(a) Suppose Pq 2 Pg and P^ = P^ + U^. Then by Theorem 

3.4, ^ 0 and it satisfies the equation 

= (B-PgD)Uj^[(DP^-C) + . (3.178) 

Let Wq = Ug and 

= (B-P^D)Wj^(B-PgD)* . (3.179) 

Since the Jordan form of B-P^D is K, whose eigenvalues are 

within the unit circle, as k->«>. Let - U^, 

then Xj^ satisfies the equation 

^k+1 = (B-PgD) {X]^+U^-U^ [1+ (B-P^D) *DUj^]"^} (B-P^D) * , 

(3.180) 

and since 

"k " Uk[I+(B-PgD)*DU%]"l 

= Uj^-UJ^(I+M^V"^MPJ^)~^(H-MV^MP^) 
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•(I+Pj^M'V"^M)~^UJ^ (3.181) 

which is nonnegative definite, 0 for all k ̂  0. Thus 

is constrained by the inequalities 

0 1 \ = "k - ̂  1 \ ' (3.182) 

so it must also approach zero as k^. 

(b) Suppose Pq = 0, Pg is positive definite, and 

Pj^ = P^ - Uj^. Then satisfies the difference equation 

= (B-PgD)U3^[(DP^-C)-DUj^]~^ (3.183) 

with Uq = Pg. Let^ W = (I + m'v~^MP^)~^M^V~^M, let Xq = P^~^, 

and let 

X̂ +]̂  = Xĵ -[ (B-P̂ D)̂ ]*W(B-PgD)̂  . (3.184) 

Then 

- S,^ > - s (3.185) 

where 

S,-(B-P D)*S, (B-P D) = W-[(B-P D)^]*W(B-P D)^ (3.186) 
G G G G 

is symmetric nonnegative definite since 

(I + MV~^MP^)~^M'V~^M = M''(MP^M''+ V)~^M. 
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and 

S-(B-P^D)*S(B-P^D) = W . (3.187) 

Equation (3.187) implies that 

(DP^-C) (P^~^-S) (DP^-O* - (Pg~^-S) 

= ($'')~^(Pg~^+ M'V~^M)$"^ - Pg"^ 

= (Pg-H)"l - P^"^ , (3.188) 

which is nonnegative definite since the inequalities 

P  > P  -  H =  $ ( P " ^  +  M ' ' V ~ ^ M ) ~ ^ $ ' '  >  0  ( 3 . 1 8 9 )  
e — e e 

imply (Bellman [23] , p. 92) that (P^-H) ̂  ̂  P^ Therefore 

by (3.188) and Appendix B, P^ ̂ -S is at least nonnegative 

* 
definite. Now suppose v is an eigenvector of (DP^-C) and a 

null vector of (P^-H) ^ - P^ Then P^ ̂ v is an eigenvector 

of and a null vector of H, which implies that there is 

an undriven mode. But this is impossible since by hypothesis, 

any undriven mode must be a stable mode, and by Theorem 3.20 

when a stable mode is undriven, P^ is singular. Thus no 

* -1 -1 
eigenvector of (DP^-C) is a null vector of (P^-H) - P^ , 

so P^ - S is positive definite, which by (3.185) implies 

that Xj^ is nonsingular for all Jc. 

The expression 

Uj^ = (B-P^D)^Xj^"^[(B-P^D)^3* , (3.190) 
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therefore/ exists for all k, and it is set equal to be­

cause: (1) it is equal to when k = 0/ and (2) it satisfies 

the difference equation for since 

= (B-PgD)^"^^{Xj^-[ (B-P^D)^]*W(B-PgD)^}"^[ (B-P^D)^^^]* 

= (B-P^D)^'^^Xj^"^{ (DP^-C) 

- (DP^-C) "^D (B-P^D)^Xj^"^}~^ (DPg-C) 

= (B-P^D) [ (B-P^D) * 

.{(DP -C) - D(B-P D)^X, "^[(B-P 
© Ô iC e 

= (B-P^D)Uj^[ (DP^-C) - DU^]"^ . (3.191) 

Finally (3.190) implies that U^-^0 as k-^» since the eigen­

values of B-P^D are within the unit circle and X^ ^ is 

bounded by (P^ ^-S) ^. 

(c) Now suppose P^ is positive semidefinite and Pg=0. 

Let the columns of L and N be basis vectors for and 

n(Pgy respectively. Then since both terms in 

N*$(P + I)~^P + N*HN = N*P N = 0 (3.192) 
e e e 

are nonnegative definite, P^$''n = 0 and HN = 0. Thus n (P^) 

is invariant under and is contained in n (H) , and by the 

properties of orthogonal subspaces, >^(Pg) is invariant under 
* 

$ and contains ̂ (H). Thus if L is chosen such that P^ = LL , 
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* 
then $L = and H = LGL where G ̂  0. Therefore if Xq=0 

and 

^k+1 " <Î>^[XJ^-Xj^L*M''(MLXJ^L*M^+ V)"^MLXJ^]$^* + G, (3.193) 

* 
then = LXj^L . 

Note that dim(X^) = rank (P^) < dim(P^) ̂ and that 

(3.193) is a covariance equation whose equilibrium solution 

is = I. Furthermore, no unstable or random walk mode in 

(3.193) is unobservable since if v were a vector such that 

$^v = Xv with IXI ^1 and MLv = lO/ then $(Lv) = X (Lv) and 

M(Lv) = 0^ which implies that the original system has an 

unobservable random walk or unstable mode. Finally, all 

modes in (3.193) are completely driven. To show this let 

the matrix N, be defined such that its columns are basis 
a 

vectors for n (R^) f $ = N^A^, and HN^ = 0, where 
n-1 i ; / 

RJ = Z $ H($ ) and A, is a Jordan matrix whose eigenvalues 
i=0 

are within the unit circle since only stable modes may be 

undriven. Then the covariance equation implies that 

+ A. N.*P M'<MP M'+ V)"W N.A, = 0, (3.194) 
a a e e e a a. 

and since the magnitude of the eigenvalues in A^ is less 

than one, each column in is a null vector of P^. Thus 

n(R^) C. n (Pg) and ^(R^) o ̂(P^) . Now = LR L where 
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i i * 
R_ = Z $. G($o ) is the state covariance matrix for the 

i=0 
reduced system, and therefore and R^ must be 

positive definite. Thus (3.193) satisfies the conditions 

imposed in the (b) part of this proof, so -*• and 

as k-^. 

(d) Finally, let Pq be any nonnegative definite matrix, 

let P^(tg) = 0, and let P^(tg) be a matrix greater than or 

equal to both Pq and P^. Then by Theorem 3.4, P^ is con­

strained by the inequalities 

' <3.195) 

and since both P^ (t^) and P^ (t^) approach P^ as k-x», P^ 

also approaches P^. Q.E.D. 

When a random walk or unstable mode is observable but 

undriven, the results are much more interesting. Numerical 

studies indicate the following conclusions: (a) when a 

random walk mode is undriven and observable, then there is 

a single nonnegative definite P^ matrix which is singular, 

and if Pq is any nonnegative definite matrix then P^ ̂  P^, 

but there are nonpositive or indefinite values of Pq which 

are arbitrarily close to P^ and yet cause P^ to diverge from 

Pg. (b) When an unstable mode is undriven and observable, 

then there are two nonnegative definite equilibrium solu­

tions, P^j^ which is positive definite and stable, and P^2 

which is positive semidefinite and unstable. The only solu­

tions which approach Pg2 are those that start from an initial 
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Pq matrix for which P^n = 0^, where n is a null vector of F^2 

and H and is an eigenvector of associated with the unstable 

mode. All other nonnegative definite values of Pq cause 

" Pel" 

These conclusions are partially supported by the follow­

ing analytic results. Suppose the random process has a 

simple random walk mode which is undriven and observable. 

Then $ ̂ has an eigenvector, n, which is a null vector of 

P^, and (B-P^D) has an eigenvector, v, which is not orthogonal 

to n, and whose corresponding eigenvalue, u, is on the unit 
* 

circle. Suppose = P^ + where Uq = BqV v . Then an 

analysis similar to the one used in the proof of Theorem 

* 
3.23 shows that = g^v v where is described by the 

scalar difference equation 

®k+l = r—; . (3.196) 
1 + U (v Dv) 

* * 
The factor y (v Dv) in the denominator of (3.196) is equal to 

* * * / —1 —1 / —1 
y (v Dv) = v (M V MP^ +1) V Mv 

= v*M''(MP M'+ V)~^Mv (3.197) 
— e — 

which implies that it is positive since if Mv were equal to 

0^, then (B-P^D)v = $v = uv and the mode would be unobservable. 

The stability of (3.196) can be determined from an examination 

of Figure 3.4, which shows that 6^ converges toward zero when 
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y/ 

Figure 3-4. Graph of versus 
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its initial value is positive but it diverges from zero when 

its initial value is even slightly negative. Thus since 

ic O 
n P, n = g, (v n) , it can be seen that there are indefinite 
— JC~ JC — — 

P^ matrices arbitrarily near P^ which diverge from P^ as 

stated in conclusion (a). 

Next suppose the system has one or more unstable modes 

which are undriven and observable. Let the columns of 

and Ng be basis vectors of and 112/ the subspaces of n (R^) 

associated with stable and unstable modes respectively y let 

n^ and 112 be the dimensions of aiid rig/ and let the columns 

of L be basis vectors of Then the following relation­

ships are true: 

H[Ni Ng] =0 / (3.198) 

$''[Ni N^] = [N^ N^] diag($^, (3.199) 

where i ($^) j < 1 and iX^(<î'2/| > 1, 

$L = (3.200) 

H = LGL where G ̂  0/ (3.201) 

= LRgL* (3.202) 

where 
m-1 

R„ = E $o^G($g^) (3.203) 
9 i=0 ^ ^ 

which is the state covariance matrix for the reduced system 

%+! = '^A* 3k (3.204) 
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^ = MLZ^ + (3.205) 

* * 
where E ] = G. Thus if = 0, then P^ = LX^L where 

Xj^ is the solution of the reduced covariance equation 

\+l ̂  [X^-X^L*M^(MLX^L*MV)~^MLXj^] + G . (3.206) 

Now (L N^)$^ = L = $2/^ N^) and G (L N^) = 0 so the n^ 

* 
columns of L are linearly independent null vectors of 

Rgf and since 

nullity(Rg) + n^ = nullity(R^) = n^ + ng » (3.207) 

these columns are basis vectors for n(Rg). Thus since the 

eigenvalues of 0^^ are within the unit circle, the only 

undriven modes in the reduced system are stable modes. 

Therefore (3.206) has only one nonnegative definite 

equilibrium solution, X^, and any X^ ̂  0 causes X^ X^ 

* 
and P^ -»• LX^L = P_2* Thus the first part of conclusion (b) 

is proved. 

The author has investigated two other approaches toward 

a complete analytic proof of conclusions (a) and (b) . The 

results of this investigation are stated in the remainder 

of this section. Although these results do not completely 

achieve the stated objective, they do show that further in­

vestigation of these approaches is warranted. Probably the 

most promising approach is a study of the properties of the 

following solution of (3.150): 
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Uj^ = (B-P^D)^Uq[(DP^-C)^ + SJ^UQ] ^ (3.208) 

where 

\ = (DPg-C)^"^D + (DP^-O'^'^DCB-P^D) + ... 

+ (DP^-C)D(B-P^D)^~^+D(B-PgD)^"^ 

= (DPg-C)^E-E(B-PgD)^ (3.209) 

and where E satisfies the equations 

(DP^-C)E-E(B-P^D) = D (3.210) 

(DPg-C)E(DP^-C)* - E = ($'')~^ (M^'V'^M+M^V'^MP^M^V'^M) 

(3.211) 

The fact that a closed-form solution of (3.150) can be 

written is somewhat surprising since the usual object of a 

stability analysis is to determine the large time behavior of 

a differential or difference equation whose solution is not 

known. But in spite of the simple form of (3.208), its 

properties are not readily apparent due to the fact that an 

inverse of a sum is involved. However, if (3.208) is re­

written in the form 

Uj^ = (B-P^D)^Uq[I+EU -(B*-D*P )^E(B-P D)^U ]"^(B*-D*P )^ 

(3.212) 

t circl 

and I + EU_ is nonsingular, then it is apparent that U. ^ 0. 

and if the eigenvalues of B-P^D are within the unit circle 
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The conditions necessary for the eigenvalues of B-P^D to be 

within the unit circle are known from Section 3: must be 

nonnegative definite, no random walk mode may be either un-

driven or unobservable / and no unstable mode may be 

^inobservable. However, the conditions which result in a 

nonsingular I + EUq matrix are not known / and the resolution 

of this problem would be an interesting and useful topic for 

further investigation. 

Lyapunov stability theory provides another promising 

approach to the problem. Let 

where u,- (t^) is the ith column of . Then (3.150) is 

equivalent to the equation 

uct,,) = (3.213) 

(3.214) 

where F(ii(tj^)) is the Kronecker product 1 

F(M(t^) ) = (B-P^D) X [(DP^-C) + DUj^] ^ (3.215) 

A possible Lyapunov function for (3.214) is 

^See Bellman [25] for the definition and properties of 
the Kronecker product of two matrices. 
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V = U. (t]ç) Sji (tj^) (3.216) 

where S is a symmetric/ positive definite matrix equal to 

the solution of the equation 

S-F*(0)SF(0) = I, (3.217) 

* 
and where F(O^) = (B-P^D) x (B-P^D) . Numerical examples 

indicate that (3.216) has all of the properties of a Lyapunov 

function provided either all of the eigenvalues of B-P^D are 

inside the unit circle and no element of is a null 

vector of P^y or if an element of is a null vector of P^^ 

then B-PgD must have an eigenvalue equal to the eigen­

value of an undriven unstable mode, with the remainder of 

the eigenvalues inside the unit circle. 

The function (3.216) is not a valid Lyapunov function 

when the random process has a random walk mode which is 

undriven and observable because F(O^) has an eigenvalue on 

the unit circle, and therefore no solution exists for S in 

(3.217). This difficulty is partially avoided by defining 

the Lyapunov function as 

V = y (tj^)S (t^) y (tj^) , (3.218) 

where S(tj^) is the solution of the equation 

S(t^) - F*(u(tj^))S(tj^)F(y(tj^)) = I . (3.219) 

This function exists and, by numerical examples, has the 
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properties of a Lyapunov function, provided the random walk 

mode is simple and Uj^ has no null vector in v, the subspace 

of n(R^) associated with this mode. If does have such a 

null vector, then F(ii(tj^)) has an eigenvector on the unit 

circle, so again no solution for S(t^) exists. This problem 

can possibly be overcome by the change of coordinates 

* X 
Pj^ = LXj^L where the columns of L are basis vectors for v . 

If the random walk mode is not simple, then (3.218) fails 

to be a Lyapunov function because it is not continuous at 

]i(tj^) = 0^. However, numerical examples indicate that the 

first difference, AV, of (3.218) is negative along any 

trajectory of for which Ug^O, which possibly indicates 

that a simple modification of (3.218) may prove to be a valid 

Lyapunov function for multiple-dimensional, as well as simple, 

random walk modes. 

The following example illustrates these comments and 

shows the rather complex behavior that the solutions of the 

covariance equation have when the random process has a 

multiple-dimensional random walk mode which is undriven and 

observable. 

Example 3.2; 

The random process has a 2-dimensional random walk mode 

which is undriven and observable. The $ matrix and its 

Jordan decomposition, 0 = TAT , are given by the equation 
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$ = 
-1 4/3 

-3 3 

2 -1 

3 0 

1 1 

0 1 

2 -1 

and the H, M/ and V matrices are equal to 

H = 0/ 

M = [-1 1] , 

V = 1 . 

, (3.220a) 

(3.220b) 

(3,220c) 

(3.220d) 

The only equilibrium solution of the covariance equation in 

this case is P =0. Therefore B-P D = B = $, 
e e 

DP^-C = -C = ($') and (3.150) takes the form 

"k+1 " 
(3.221) 

When Uj^ is small, the solution of (3.221) is nearly identical 

to the solution of the linearized equation ^ which 

is unstable since $ has a multiple eigenvalue on the unit 

circle. However, the nonlinearity in (3.221) causes those 

solutions whose initial values are nonnegative definite to 

eventually approach 0. This is most apparent when the Jordan 

expansion $ = TAT is used to replace (3.221) by the pair of 

equations 

"k = TXk? 

^k+1 " + T'M'v"lMTX%]"lA', 

(3.222) 

(3.223) 
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which in expanded form are equal to 

"k - ̂ 11 

4 6 

6 9 

+ X 12 

-2 0 

-3 0 

+ X 
21 

-2 -3 

0 0 

and 

+ X 
22 

\+l = 

^11 ^12 ^21 ^22 

^ *11 *12 "*• *21 *22 

*21 *22 

1 + x^jL + x^2 + ̂ 21 *22 

(3.224) 

*12 * *22 
1 + x^^ + x^2 

*21 *22 

*22 (*ll*22"*12*2l) 

1 + *11 + Xi2 + *21 + X22 

(3.225) 

where x. . is the (i, j)th element of X, . Note that U, > 0 Ij — JC JC — 

if and only if the conditions x^ ̂ ^0/ x.^ > 0, x,^ + x^ _ 

+ X21 + X22 2. Of and ^11X22 - *12*21 — ® all satisfied. 

Now as a representative example, consider the initial 

condition 

^0 = 

0 a 

where 0 < a << 1, 

0 0 

^11'V = 

(3.226) 

The general solution of (3.225) is then 

2 
(3.227) 

ak 

a Z i^ 
i=l 
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'la'V = *2I"tc> = ^ — (3.228) 

1 + a 2 i 
i=l 

= r-T (3.229) 

1 + a Z 
i=l 

which is plotted in Figure 3.5. Note that when is small, 

the system is essentially unstable because at each iteration 

the relatively constant value of is added to x^2 and 

which in turn are added to But when the *i]_/^22 

becomes sufficiently large, the effect of the divisor 

1 + + x^2 + ̂ 21 ^22 predominates and the elements of 

Xj^ begin to decrease in value. On the other hand when a 

slightly negative, the divisor accelerates the divergence 

of from 0. 

The behavior of the function (3.218) resulting from 

two different solutions of the covariance equation are 

plotted in Figure 3.6. In both curves, the Uq matrix was 

chosen such that Xq had the form of (3.226) with a = .01 

for curve (a) and with a = .1 for curve (b). It is interest­

ing to observe that although the elements of both X^ and Uj^ 

increase in value for the first 5 or 6 samples of either 

solution, the value of the function (3.218) decreases mono-

tonically. However, the initial value of V increases as the 

parameter a decreases. This means that 
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Figure 3.5. Graph of the transient behavior of the variables x..(t.) for Example 
3.2 with a=0.01 
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UJ 

Œ 

O 
•—1 (a) 

O 

U- : (b) 

Q_ 

0.00 l.OO 2.00 3.00 y.00 
S A M P L E  N O .  Cxio^ i 

Figure 3.6. Graphs of function (3.218) versus k along two 
different trajectories of 

Curve (a) — a = 0.01 

Curve (b) — a = 0.1 
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lim V ̂  0 (3.230) 

for all paths of approach, as it must if (3.218) is to be a 

valid Lyapunov function. 

Another interesting aspect of this case is the effect 

of round-off error in the computer calculation of Pj^. Since 

the system is nearly unstable for small it is not 

surprising that round-off errors have a significant effect 

on the computed P^ matrices. In fact if round-off error 

should happen to make the X22 component of negative, the 

solution would be expected to diverge toward more negative 

definite values. To prevent this from happening, Sorenson 

[26, p. 261] proposes using the equation 

P]^+]^ = $[(! - K^M)P^(I - Kj^M)^ + K^VK^ ] H (3.231) 

where 

= Pt,M'(MP^M'+ V)"^ (3.232) 
4^ fk 

rather than any other form of the covariance equation be­

cause every term in (3.231) is nonnegative definite. How­

ever when round-off error is present, this is no guarantee 

that the computed P^^^ matrix will be nonnegative definite 

since a considerable amount of cancellation can occur in 

the computation of the first two terms of (3.231). This is 

demonstrated in Figure 3.7 in which the trace of the computed 

Pj, matrix is plotted vs. k when P^ is computed in three 
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computationally different, but algebraically equivalent, ways 

using (3.231). For curves (a) and (b), the elements of 

were computed according to the formula 

+ ^ilPl2^j2 ^i2P21^jl ^12P22^j2 

+ g^vg. + h.j (3.233) 

where f g^r h^j, and p^^ are the elements of $(I-K^M), 

H/ and respectively, using double precision floating 

point arithmetic on the IBM 360/65 for curve (a) and using 

single precision floating point arithmetic for curve (b). 

For curve (c), the elements of P^^^ were computed according 

to the formula 

^ij ̂"hc+l^ ^il^^ll^j 1*^^12^j 2^ ^i2 ̂P21^jl''"P22^j2^ 

+ g.vg. + h. j 

jl 

(3.234) 

using single precision floating point arithmetic. The 

initial P matrix was 

^0 = 

.1 
1 

(3.235) 

0 0 

in all cases. The author has not made a detailed study of 

the manner in which round-off errors enter into the com­

putation of (3.233, 3.234), but evidently the factoring of 

ff^2 (3.234) is more prone to negative round-off 

errors. 
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c. Stability of the actual covariance matrix In 

many applications of the Kalman filter, it is quite difficult 

to evaluate the actual driving, measurement and initial error 

covariance matrices, V^, and P^Ctg) respectively. This 

means that H, V, and Pq are only estimates of the correspond­

ing actual covariance matrices, and therefore the computed 

error covariance matrix, may not be equal to the actual 

error covariance, P,(t, ). In fact it will be shown that 

P^(tj^) can be unbounded even though P^ is bounded. 

The difference equation for P^(t^) is derived as 

follows. The actual random process is described by the equa­

tions 

3^+1 = *2% + (3.236) 

^ = Mx^ + (3.237) 

where E and E [Ay^.Ayj^ ] = V^, and the Kalman 

filter estimate of the state vector is given by the equation 

Zk+l = (3.238) 

where 

Ky, = Pj^M^(MPj^M^+ V)"^ (3.239) 

and 

= $[(I-K%M)P^(I-K^M)'+ K%VK^']$'+ H . (3.240) 

Therefore the difference equations for the actual error. 
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= 2^ - x^, and the actual error covariance are 

Sk+l = *!(! - *kWSk + KkAZk' - bk (3-241) 

and 

^a<W = '*'+ «a 

(3.242) 

respectively. Notice that (3.240, 3.242) have the same 

form, but (3.242) is a time-varying linear equation while 

(3.240) is effectively nonlinear since depends on P^. 

To begin the stability analysis of (3.242) , let it be 

assumed that is equal to one of the equilibrium solu­

tions, Pg, of (3.240) . Then becomes the constant matrix 

Kg = PgM''(MPgM''+ V)~^ , (3.243) 

and by (1.28f, 3.50b, 3.50d) 

$(I - K^M) = B-P^D (3.244) 

so (3.242) becomes the time-invariant difference equation 

(3.245) 

The stability of (3.245) depends on the location of the 

eigenvalues in the Jordan form, K, of B-P^D. If the system 

has no random walk or unstable modes which are undriven, 

^In the time-varying case, these same equations imply 
the identity $(I-K^M) = B-P^^^D. 
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then the eigenvalues of B-P^D are within the unit circle 

and P^(t^) approaches the equilibrium value P^^ which is the 

solution of the linear equation 

Pae - (B-PgWP^^CB-P^D)* = . (3.246) 

Furthermore if = H and = V, then P^_ = P^/ so P_ (t, ) 
a o. a G 6 a 

•> P^ even though the initial covariances P^ttg) and Pq, 

may not have been equal. Thus in this case it is possible 

to be rather careless in the selection of Pq. 

If the random process has a simple random walk mode 

which is undriven, then there exists a vector, n, such that 

. * , , 
$ n = X n with [ X | =1 and such that P^n = Hn = 0_. There­

fore there also exists a vector, v, such that (B-P^D)v = Xv 

* 
and n V = 1, while n is orthogonal to all other eigenvectors 

* 
of B-P^D. Thus a^v V is one of the components in the ex­

pansion of P^(tj^) in terms of the eigenvectors of B-P^D, 
* 

and by pre- and postmultiplication of (3.245) by n and n, 

the difference equation for is 

= 0% + 2. H^n . (3.247) 

This implies that either increases without bound if the 

random walk mode is not actually undriven, or it remains 

fixed at a value which is greater than zero^ if the actual 

1 * One of the components in the expansion of Pj, is Bj^v v 
where which is described by the nonlinear difference 
equation (3.196), approaches zero if its initial value is 
nonnegative. 
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variance of this mode is not zero when first becomes 

equal to . In both cases, the actual estimation errors 

could be considerably larger than the computed error co-

variance matrix would indicate. 

If the random process has an unstable mode which is un-

y * 
driven, then there exists a vector, n, such that $'n = X n 

with |X| >1 and such that Hn = £, and if Pq is positive 

semidefinite with P^n = 0, then P, n = 0 for all k > 0 and 
0— — k— — — 

Pj^ approaches a positive semidefinite equilibrium matrix 

for which P^n = 0^. Therefore, there also exists a sequence 

of eigenvectors, such that 0(1 - Kj^M)^ = Xv^ with 
* 
n 3^ = 1, while n is orthogonal to all other eigenvectors 

* 
of $(I - K^M). Therefore a^v^v^ is one of the components 

in the expansion of P^(t^), and by pre- and postmultiplication 
* 

of (3.242) by n and n, the difference equation for is 

a, = IXl^a, + n*H n . (3.248) 
iC-rx • • JC — a— 

Since P, P , the eigenvectors v, v where v is a vector K 0 —JC — — 
* 

such that (B-P^D)V = Xv with n v = 1, so the component 
* 

of P^(tj,) remains bounded if and only if is 

bounded. Therefore by (3.248), P (t,) is unbounded if the 

unstable mode is not actually undriven or if the initial 

variance in the estimate of this mode is not actually zero 

as it was assumed to be when P. was chosen such that P.n =0. 
u u— — 

Now suppose that P^ is not equal to one of the equilibrium 

matrices. By Theorem 3.24, it is known that if all of the 
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random walk and unstable modes of the random process are 

both driven and observable, then Pj^ approaches the equilibrium 

matrix, whose corresponding K matrix has all of its 

eigenvalues within the unit circle. And by the preceding 

analysis of (3.245), it is known that when P^ = P^, these 

same conditions imply that P^(t^) approaches P^^. Therefore 

it is expected that P^ (t^^) should approach P^^ for any pair 

of nonnegative definite initial error covariances, Pq and 

P^ttg), and this is shown to be true by the following theorem. 

Theorem 3.25: 

If all unstable and random walk modes of the random 

process are both driven and observable and if Pq and P^ftg) 

are symmetric nonnegative definite, then P^^t^) -»• P^^ as 

k-+<o. 

Proof: 

Consider first the vector difference equation 

(3.249) 

whose solution can be written as 

(3.250) 

where 

*x(tm'to) = <Î>(I-K^_^M) ... $(I - KqM) . (3.251) 

Let P^ denote the symmetric, nonnegative definite equilibrium 
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solution of the covariance equation, and let the function 

V (3^) be defined as 

V(3^) = (3.252) 

where S is the solution of the equation 

S - (I-K^Mj'o'sOfl-K^M) = I . (3.253) 

This solution is symmetric, positive definite since the 

eigenvalues of $(I-K^M) are within the unit circle. The 

first difference of (3.252) along any trajectory of (3.249) 

is 

AV = V(^^3_) - V(x^) 

= x^/[(I-K^M)'$/S0(I-K^M) - S]x^ . (3.254) 

Since the model of the random process is regular, 

and Kj. K_ which implies that there exists an integer, N, 

such that the quantity within brackets in (3.254) is negative 

definite for all k ̂  N. This implies that (3.252) is a 

Lyapunov function for (3.249) and that (3.249) is asymptotical­

ly stable in the large. 

Now let Pg^t^) = P^^ + W^. Then is described by the 

difference equation 

^k+1 = f(I-Kj^M)Wj^(I-Kj^M)%^+ (3.255) 

where 
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+ K, V K,' - K V K ^ (3.256) 
k a Tc e a e 

and the solution of (3.255) for is 

m-1 
+ (tm'ti+i) • <3-257) 

1—u 

Since (3.249) is asymptotically stable in the large, there 

exist positive constants c^ and such that 

-X^(m-j) 
< c^e , (3.258) 

and since -»• P^ exponentially, there exist positive 

constants C2 and X^ such that 

-X-i 
i |Du| I < c^e ^ . (3.259) 

Therefore 

^ —2X,m m—1 ~ —2X^ (m—i—1)—X_i 

(3.260) 

which approaches 0 as m->«>. Thus P^(t^) ̂  P^^. Q.E.D. 

As was the case in the analysis of the computed co-

variance equation, a relaxation of the completely driven 

condition on random walk or unstable modes leads to much 

more interesting results. These are illustrated by the 
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following numerical examples. 

Example 3.3; 

The random process has a stable mode which is driven and 

observable and an unstable mode which is undriven and obser­

vable. The $ matrix and its Jordan decomposition, $T = TA, 

are given by 

3/2 -2/3 

1/2 

2 -1 2 -1 1/2 0 

0 3/2 

the H, H^, and M matrices are equal to 

(3.261a) 

H = Ha = 

4 6 

6 9 

M = [-1 1] , 

(3.261b) 

(3.261c) 

and V = = 1. The covariance equation has two nonnegative 

definite equilibrium solutions; 

^el = 

13.13719 

10.61281 

10.61281 

11.88719 

which is positive definite and stable, and 

(3.262) 

^e2 = 

4.53113 

6.79669 

6.79669 

10.19504 

(3.263) 
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which is positive semidefinite and mistable. The vector 

n = [3 -2]' is a null vector of H and is an eigen­

vector of associated with the unstable eigenvalue. The 

traces of P^ and P^(t^) are plotted in Figure 3.8 for the 

initial conditions 

^0 = 

64 0 

0 64 

Pa(to) 

49 0 

0 49 

(3.264a,b) 

and in Figure 3.7 for the initial conditions 

^0 = Pa(to) = (3.265a,b) 

Both curves in Figure 3.8 approach the trace of P^j^ because 

n is not a null vector of the first P^ matrix. This implies 

that P^ Pg3_r and since B-P^^D is stable and = H and 

= V, P^(t^) also approaches P^^» However in Figure 3.9, 

the trace of P^ initially approaches the trace of Pg2 

the trace of P^(t^) increases without bound because n is a 

null vector of the second Pq matrix. And this would continue 

indefinitely if perfect computation were possible, but 

since P^2 is unstable and since some round-off error is 

present, even with double precision arithmetic, the numerical 

value for P^ eventually departs from and approaches P^^. 

W h e n  t h i s  h a p p e n s ,  t h e  d i f f e r e n c e  e q u a t i o n  f o r  P ^ b e c o m e s  

stable, and therefore the trace of P^(t^) decreases rapidly 
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to tr(Pg^) from the large value which accumulated during the 

time when was equal to 

Example 3.4; 

The random process has a stable mode which is driven and 

observable and a random walk mode which is un driven and 

observable. The $ matrix and its Jordan decomposition, 

$T = TA, are given by 

1 -1/3 t
o
'
 

H
 1 

2 -1 to
 

o
 1 

0 1/2 3 0 3 0 0 1 

and the H, H , M, V, and matrices have the same values as 
3L cL. 

in Example 3.3. There is only one nonnegative definite P^ 

matrix in this case, which happens to be equal to P^g the 

previous example. The B-P^D matrix has, as expected, a 

simple eigenvalue on the unit circle, and since n = [3 -2] 

is a null vector of as well as P_ and H, (3.247) implies 
* 

that the component a^v v of P^(t^) remains equal to the value 

it has when P^ first becomes essentially equal to P^. 

Figures 3.10 and 3.11 indicate that the final value of 

depends on the initial covariance, Pq and P^ttg). The traces 

of P, and P (t, ) are plotted in Figure 3.10 for the initial 
K â JC 

conditions (3.264) and in Figure 3.11 for the initial 

conditions (3.265). These figures demonstrate that when Pq 

is considerably greater than P^, then P^(t^) rapidly 
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approaches P. and both of them approach P . but when n is a 

null vector of Pq and not a null vector of / then the 

final value of P (t, ) is significantly greater than the final 

value of P 
k 

Example 3.5; 

The random process has a multiple random walk mode 

which is undriven. The H, M, and V matrices are given by 

(3.220), and = 1. The only equilibrium solution in this 

case is Pg = 0, and the corresponding B-P^D matrix has a 

multiple eigenvalue on the unit circle. Equation (3.245) 

is therefore unstable, and it is expected that (3.242) may 

also be unstable when P^ is near zero. This is verified 

by Figures 3.12 and 3.13 in which the traces of Pj^ and 

P^(tj^) are plotted for the initial conditions 

^0 = 

.1 

0 

Pa(to) = 

1 0 

0 1 

(3.267a,b) 

ana 

^0 = 

40 60 

60 90 

Pa(to) 

1 0 

0 0 

(3.268a,b) 

respectively with = 0, and by Figure 3.14 in which the 

initial conditions are 
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^0 = 

with 

«a = 

.01 0 

0 0 

2 X 10"® 0 

Pa(to) 

1 0 

0 1 

(3.269a,b) 

(3.270) 

Figures 3.12 and 3.13 indicate that the boundedness of (t^^) 

depends on the initial conditions. In the first case both 

Pj^ and P^(t^) converge to P^, but in the second case, Pj^ 

converges to P^ while P^^t^) diverges. The reason for this 

divergence can best be seen by making the change of variables; 

$ = tAt"^, P, = TX,T*, and p^(t, ) = TY,T*. Then by (3.224, 

3.225) 

^k = 

Ell(tj^) 0 

0 0 

(3.271) 

where 

=^11 

and by (3.242) 

yii+yi2+y2i+y22+=ii 

(3.272) 

k+1 

yi2+y22 

(l+Xii) 

Yoi+y 

l+x 
11 

21^22 
l+x 11 22 

(3.273) 
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where and denote and ^ (t^) respectively. 

This equation implies that and therefore (t^), is un­

bounded unless P^Ctg) has the form 

P=(tn) = y. (3.274) 

and since (3.269b) is not of this form, P (t.) diverges. 

Figure 3.14 shows that if the actual random process is slight­

ly driven, then the actual covariance matrix eventually 

diverges from the computed covariance matrix, even though they 

may have apparently been equal for a significant period of 

time. 

These exangles show that when a random walk or unstable 

mode is modeled as being undriven, the boundedness of P^(t^^) 

depends in a complex manner on the initial covariances, Pq 

and P^(tQ), as well as on whether the mode is actually un­

driven. An analytic description of the set of initial co-

variances which result in a bounded solution of the difference 

equation for P^(t^) would be an interesting and useful topic 

for further research. 
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IV. SUMMARY OF RESULTS 

AND CONCLUSIONS 

In this chapter, the main results of the analysis of 

Chapter III are summarized, the conclusions resulting from 

this analysis are stated, and some possibilities for future 

research are discussed. 

A. Summary of Results 

The following list summarizes the main results of the 

previous chapter. 

1. , It has been shown that the discrete-time and con­

tinuous-time covariance equations have analogous existence, 

symmetry, definiteness, and ordering properties. 

2. A graphical analysis of the scalar, time-invariant 

covariance equation clearly shows how the stability of this 

equation is affected by the stability of the random process 

and by whether it is driven and/or observable. 

3. Potter's [15] procedure for solving the quadratic 

* 
matrix equation A + BP + PB - PDP = 0 has been extended to 

the solution of the more general equation A + BP + PC - PDP 

= 0. It has been shown that all of the solutions can still 

be expressed as P = FF ^ where F and F are the upper and lower 

halves of a solution of the equation RT = TJ, and some 

conditions which must be satisfied by the Jordan matrix, J, 

have been derived. 
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4. It has been shown that the equilibrium solutions 

of the time-invariant covariance equation satisfy a quad­

ratic matrix equation. The R matrix used in the solution 

of this equation is called R^, and its eigenvalues and 

eigenvectors have some special properties which have been 

stated and proved. 

5. It has been shown that the existence, symmetry, 

definiteness, and local stability properties of an equil­

ibrium solution can be deduced from the eigenvalues of the 

corresponding J matrix. 

6. The relationships between the symmetry and definite­

ness properties of the a posteriori and a priori equilibrium 

matrices have been derived. Also a quadratic matrix equa­

tion for the a posteriori equilibrium matrices was derived 

and some relationships between its solution and the solution 

of the quadratic matrix equation for the a priori equilibrium 

matrices were shown. 

7. It has been shown that the computed covariance matrix 

is globally stable when its initial value is nonnegative 

definite and the random process is regular, i.e. it has 

neither random walk nor unstable modes which are either 

undriven or unobservable. 

8- The effects of having an undriven random walk or 

unstable mode in the random process, and the effect that the 

initial covariance matrix has in such cases, has been 
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discussed. Although this discussion is only partially 

based on analytic proofs, these proofs and some numerical 

examples give a fairly clear picture of the global stability 

properties of the covariance equation under these conditions-

9. It has been shown that the stability of the dif­

ference equation for the actual, as opposed to the computed, 

covariance matrix depends upon the model that is assumed 

for the random process. If the assumed model is regular, 

then this difference equation is asymptotically stable in 

the large, but if the assumed model is not regular, then its 

stability depends upon the initial values of both the actual 

and computed covariance matrices as well as upon the accuracy 

of the assumed model. 

B. Conclusions 

In this section, the main conclusions resulting from 

the analysis of Chapter III are listed. These conclusions 

supply answers to all four of the questions stated at the 

beginning of Chapter II. 

1. If the random process model is regular, then the 

difference equation for the computed covariance matrix, P^, 

has a single nonnegative definite equilibrium solution, P^, 

and any solution whose initial value is nonnegative definite 

approaches P^ as k-wo. Furthermore the difference equation 

for the actual covariance matrix, P^^t^), is a stable, time-
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varying, linear difference equation whose solution approaches 

the equilibrium value of (3.101) . If the assumed model 

is not an accurate representation of the actual random 

process, then and P^(t^^) follow different trajectories 

and converge to different equilibriums. They both remain 

bounded, however, and there is only a gradual degradation 

in the performance of the filter as the model departs from 

the actual random process. Also since every solution whose 

initial value is nonnegative definite converges to the same 

equilibrium value, small errors in the numerical solution 

of the covariance equation have a relatively minor effect 

on the operation of the filter. This is even true when P^ 

is singular and P^ is slightly indefinite due to round-off 

error. Since P^ is locally stable, P^ returns to P^ for 

any initial condition within a suitably small region of P^. 

2. The covariance equation is unstable if there is an 

unstable mode which is unobservable or if there is a random 

walk mode which is driven and unobservable. If there is a 

random walk mode which is both undriven and unobservable, 

then the covariance equation has a continuum of equilibrium 

solutions resulting from the variance in the estimate of 

the random walk mode which is constant and equal to the 

arbitrary initial variance. 

3. If the model of the random process has a random walk 

mode which is undriven and observable, then the difference 
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equation for the computed covariance matrix, has a single 

nonnegative definite equilibrium solution, P^, which is 

singular and only semi-stable, i.e. every solution whose 

initial value is nonnegative definite converges toward P^, 

but there are indefinite Pq matrices arbitrarily near P^ 

which cause P^ to diverge from P^. Therefore in this case, 

small errors in the numerical solution of the covariance 

equation can have catastrophic effects on the operation of 

the filter if these errors happen to generate an indefinite 

P^ matrix which is in the set of solutions which diverge 

from P^. This cannot happen until the filter has operated 

long enough to reduce the variance in the estimate of the 

random walk mode to a value which is roughly equal to the 

magnitude of the round-off errors, and even then it is diffi­

cult to predict whether it will happen. Nevertheless, the 

possibility of this divergence implies that this model is 

not a very "safe" model, and it should be used with great 

care. 

Another problem with this model is that the transition 

matrix in the difference equation for P (t.) has an eigen­

value on the unit circle when P^ is equal to P^. This causes 

P^(tj^) to be unbounded if the random walk mode is not actually 

undriven, and it allows P_(t,) to approach an equilibrium 

value considerably different from P^ if the mode is actually 

undriven. 
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4. If the model of the random process has an unstable 

mode which is undriven and observable, then the difference 

equation for the computed covariance matrix has two non-

negative definite equilibrium solutions, which is posi­

tive definite and stable and P^2 which is positive semi-

definite and unstable. The only solutions which approach 

P^2 are those that start from an initial covariance matrix 

for which P^n = £, where n is a null vector of 'P^2 ^.nd H 

and is an eigenvector of associated with the unstable 

eigenvalue. These solutions cause the difference equation 

for the actual covariance matrix to be unstable and its 

solutions remain bounded only if the unstable mode is actually 

undriven and P^(tQ)n is exactly 0^. Therefore for this model, 

initial conditions such that P^n = 0^ are also not very safe 

and should be used very carefully. All other nonnegative 

definite Pq matrices, however, cause P^ -»• P^g^ and P^(tj^) -» 

P^g, both of which are stable equilibriums. Small computa­

tional errors have a significant effect only on those solu­

tions that approach the unstable equilibrium, P^g* Since it 

is unstable, these errors are propagated forward with in­

creasing magnitude, and eventually cause P^ to depart from 

Pg2 ajid settle down to P^^. However as Figure 3.9 shows, the 

end result of this can be beneficial since the difference 

equation for P^(t^) then becomes stable. 
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C. Future Research Possibilities 

In this section, some possible topics for further re­

search are discussed. First, the topics which involve the 

strengthening or completion of theorems which have been 

proposed on the basis of observed numerical phenomena are 

listed. 

1. Can the conditions of Theorems 3.13 through 3.16 

be shown to be both necessary and sufficient? In each 

case, the theorems, as stated, prove only one side of the 

double implication which numerical examples seem to indicate. 

2. Can conditions be found which are both necessary 

and sufficient for the matrix to be derogatory? And when 

Rp is derogatory, is there a way to describe the resulting 

continuum of equilibrium solutions in terms of the least 

number of arbitrary parameters? Also can Theorems 3.13 

through 3.17 be extended to include these cases as well? 

3. Can it be proved that every solution, whose initial 

value is nonnegative definite, approaches a unique non-

negative definite equilibrium matrix when the random process 

has a random walk mode which is undriven and observable? 

Likewise when the random process has an unstable mode which 

is undriven and observable, can it be proved that the solu­

tions of the covariance equation whose initial values are 

nonnegative definite approach either P or P as described 
®1 ®2 

in item 3 of the previous section? In particular, are the 
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solutions for which P^n = £ the only solutions which ap­

proach P ? These conclusions, which are presently based 

upon numerical examples, might possibly be proved either by 

further analysis of the expressions (3.208) or (3.212) 

or by finding a valid Lyapunov function. 

The remaining topics represent areas of research that 

are supplemental to, rather than improvements of, the re­

search reported in this thesis. 

4. It was noted in the discussion of Example 3.5 

that the convergence of the actual covariance matrix, P^(t^), 

to an equilibrium value depends upon the initial values of 

both the computed, P^, and actual, PaCtg), covariance matrices 

when the model of the random process has either a random walk 

or an unstable mode which is undriven and observable. An 

analytic description of the set of P^C^q) matrices which, 

for a given value of Pq, cause P^(t^) to converge to its 

equilibrium value, P^^f would be very useful. 

5. It has been shown in this thesis that the covariance 

equation has a stable, nonnegative definite equilibrium solu­

tion provided all of the random walk and unstable modes in 

the random process are completely observable. Recall from 

Chapter I that a mode, (t^), is defined to be completely 

observable if its subspace, t^, is contained within the 

range of the observability matrix, P^. This definition, 

therefore, provides only a yes/no answer concerning the 
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observability of these modes, rather than a numerical measure 

of their observability. This implies that the question of 

stability of the covariance equation is likewise answered 

with an absolute yes or no. It is proposed that a relative 

measure of stability may be obtained by a modification of 

the definition of relative observability proposed by R. G. 

Brown [27]. 

6. It has been assumed throughout most of this thesis 

that the measureraent error covariance matrix, V, is positive 

definite, and in fact, V appears in many of the formulas. 

An investigation of what happens when V becomes positive 

semidéfinite would be quite useful. 

7. Finally, a very useful topic would be an investiga­

tion of the time-varying case to see whether the results that 

have been derived in this thesis for the time-invariant case 

also apply when the M^, V^, and matrices are functions 

of k. 
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VII. APPENDIX A: NOTATIONAL CONVENTIONS 

In this appendix, the notational conventions that have 

been used in this thesis are listed. 

1. Equation numbers are enclosed in parentheses and 

reference numbers are enclosed in brackets. 

2. Scalars are denoted by lower case letters, matrices 

are denoted by upper case letters, and column vectors are 

denoted by lower case underlined letters. A particular 

component of a matrix or column vector is denoted by a sub­

scripted lower case letter, e.g. a^^j denotes the (i, j) th 

element of the matrix A. The identity matrix is denoted by 

I, the null matrix by 0, and the null vector by 0^. 

3. The transpose of a vector or matrix is denoted by 

the prime symbol, and the complex conjugate transpose is 

denoted by the asterisk. 

4. Vector spaces are generally denoted by lower case 

Greek letters, but the range space of a matrix, say A, is 

denoted by >^(A) and its null space is denoted by n(A). 

5. The determinant of a matrix. a, is denoted by [a], 

while i1a|I and ||a|| denote the norm of the matrix a and 

the vector a respectively. The methods used in computing 

the norm of a matrix or vector are specified in those portions 

of the text where the norms are used. The ith eigenvalue of 

A is denoted by (A) . 
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6. The expected value of a random variable, say x, is 

denoted by E[x], and the derivative of a variable with respect 

to time is denoted by x. 
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VIII. APPENDIX B; SOME MATRIX THEOREMS 

Some theorems concerning matrix theory are stated and 

proved in this appendix. The first theorem is a corollary 

of the matrix inversion lemma. 

Theorem 8.1: 

If MP^M^ + V is nonsingular, then the a posteriori co-

variance matrix, is related to the a priori covariance 

matrix, P^, by the equations 

Qy. = Pj^d + M^v"^MPj^)~^ (8.1a) 

= (I + Pj^m'v"^M)"^Pj^ . (S.lb) 

Proof; 

Theorem 3.20 implies that the right side of (8.1a) 

exists. The equality of this expression with is shown 

by the following sequence of identities, starting from 

(1.24): 

Qk " Pjc " PkM''(MPĵ M̂ +V)"̂ MPĵ  

= Pj^[I-M^(MPj,M^+V)~^MPj^] (I+M^V~^MPj^) (I+M^V~^MPj^) 

= P^ [I+M^V"^MP^-M^ (MP^M^'+V) ~^MPj^ (I+M^v"^MP^) ] 

• (I+m'V~^MPj^)~^ 

= P̂  [I+M-̂ v'̂ MPĵ -M ̂ (MP̂ M'̂ +V) (MPj M̂'̂ +V) V~̂ MPĵ ] 

/ — 1 — 1 
• (I+M V -MP^) -
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= (I+M''V~̂ MPj^) ^ ( 8 . 2 )  

Identity (8.1b) is proved in a similar manner. Q.E.D. 

Notice that the nonsingularity of is not required 

in the statement or proof of these identities. This, there­

fore is the primary advantage of these identities o-^rer the 

matrix inversion lemma, (1.28d). 

The next theorem establishes a similarity relation that 

is used in the proof of Theorem 3.10. 

Theorem 8.2; 

Let Q denote the simple Jordan matrix cjl + N, where N 

* -1 supplies the superdiagonal ones. Then (fi ) is similar to 

* -1 
the matrix (w ) I + N. 

Let n denote the number of rows and columns in 0, and 

let X be the matrix whose elements are equal to 

Proof: 

j-1 

= (-i)i ^ (^*)n+j-i-l when j > n-i 

0 when j ̂  n-i . (8.3) 

For example, when n=4, X has the form 
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X = 

0 0 

0 

-u' 

-u 

to
 

(8.4) 

where u = to . By direct substitution, it can be verified 

that X satisfies the equation 

X = J2*X[ (03*)"^! + N] . 

Therefore X also satisfies the equation 

(fl*)~^X = X[(a)*)~^I + N], 

which inplies the conclusion since X is nonsingular. When ̂  

is the direct sum of a set of simple Jordan matrices, the 

same conclusion is obtained by defining X to be the direct 

sum of a set of matrices of the form (8.3). Q.E.D. 

The third theorem establishes a property of cyclic sub-

spaces which is used in the proof of Theorem 3.18. A sub-

space , a, of an n-dimensional vector space is called cyclic 

if it is spanned by a sequence of vectors of the form 

O— % 
X / / • « • / A X (8.7) 

where A is an n-by-n matrix, x is an arbitrary element of 

the vector space, and p is the smallest integer such that 

the vector A^x is a linear combination. 
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A^x = (a-A^ ^ + a^A^ ̂  + ... + a I)x , (8.8) 
— X z p — 

of the preceding p vectors of the sequence. Equation (8.8) 

can be written as 4)(A)x = 0^ where <j>(X) is the monic poly­

nomial 

4(X) = XP - a^xP'l - ... - a^ , (8.9) 

which is called the minimal annihilating polynomial of x. 

Theorem 8.3: 

If a is a cyclic subspace associated with the matrix A, 

then a contains an eigenvector of A. 

Proof; 

Let be a zero of (J)(X), let 

8(X) = 1:^ , (8.10) 

and let 

V = 0 (X)x . (8.11) 

The vector v is not zero because the degree of 0(X) is less 

than the degree of the minimal annihilating polynomial, 

4) (X) . Also 

(A-X^I)v = (A-X^I) [6 (A) x] = <j)(A)x = 0^. 

Thus V is an eigenvector of A. Q.E.D. 
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The final theorem establishes necessary and sufficient 

conditions for the solution of the equation 

A*QA - Q = R (8.13) 

to be singular when the eigenvalues of A, X^(A), are greater 

than one in absolute value and R is Hermitian, nonnegative 

definite. This solution can be written as 

-i * —i Q = Z (A RA ^ ; (8.14) 
i=l 

which implies that Q > 0 when R > 0. However, when R is 

positive semidefinite, Q may be either positive semidefinite 

or positive definite. The following theorem resolves this 

ambiguity. 

Theorem 8.4; 

I f  1 ( A ) I  >  1  a n d  R  i s  p o s i t i v e  s e m i d e f i n i t e ,  t h e n  Q  

is singular if and only if there exists an eigenvector of 

A which is null vector of R. 

Proof: 

Let X be a vector such that Ax = Xx and Rx = 0^. Then 

* 
by pre- and postmultiplying (8.13) by x and x, the equation 

(X*X - l)x*Qx = 0 (8.15) 

is obtained, and since |X| > 1, (8.14) implies that 
* 
X  Q x  = 0 .  T h u s  s i n c e  Q  i s  n o n n e g a t i v e  d e f i n i t e ,  i t  i s  
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singular. 

Let n be a null vector of Q and let x = A n. 

Then (8.13) implies that 

X (Q + R)x = n Qn =0/ (8.16) 

and since both Q and R are nonnegative definite, x must be 

a null vector of both Q and R. Therefore, by repetition 

of this argument, it can be seen that every vector in the 

sequence {x, A ^x, A ^x, ...} is a null vector of both Q 

and R. These vectors define a cyclic subspace which, by 

— 1 
the previous theorem, contains an eigenvector, v, of A 

which is a null vector of R. But v is also an eigenvector 

of A, which implies the desired conclusion. 
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IX. APPENDIX C: OBSERVABILITY AND 

CONTROLLABILITY THEOREMS 

In this appendix, some tests for determining whether a 

given mode of a random process is completely driven and/or 

completely observable are stated and proved. These tests 

are considerably easier to apply than the basic definitions. 

In the continuous-time case, the random process is 

described by the equations 

X = Ax + h (t) (9.1) 

= Mx (9.2) 

where E [h (t)h'^ (u) ] = H6 (t-u) . The eigenvalues of A are 

X^/ ..., and the Jordan decomposition of A is • • • / 

AT = TA (9.3) 

where the matrices T and A can be partitioned as 

(9.4) 

A = diag(A^, ..., A^) . 

By (9.3), the Jordan decomposition of a'' is 

• • • / (9.5) 

(9.6) 

-1 * where (T ) can be partitioned as 

-1 * 
(T = [S^, • • • / (9.7) 
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The state space,may be decomposed into the direct 

siims 

<&= -̂ 1 ® . .. ® 

= 0^ @ @ (9.8) 

where 

= subspace spanned by the columns of T^. 

= si±)space spanned by the columns of S^. 

Equations (9.4, 9.7) imply that X for all i 5^ j. 

The ith mode, ̂ ^(t) , is defined to be completely driven if 

/ where 

t^ 

R = I 0(t)H$'(t)dt, (9.9) 

^0 

and it is defined to be completely observable if 

Ti f) n (P^ ) = 0_' where 

= [M', A^M^, ..., (A^)^"^M^]. (9.10) 

Theorem 9.1: 

The ith mode, C.^(t) , of (9.1) is completely driven if 

and only if no eigenvector of corresponding to the eigen-

* 
value is a null vector of H. 

Proof: 

The proof has two parts. In part (a) it is shown that 

^̂ (t) is completely driven if and only if  ̂n (R̂ ) = 0̂ , 
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i.e. and n(R^) have no nontrivial vectors in common, and in 

part (b) it is shown that has a nontrivial vector in 

n(R^) if and only if there is an eigenvector of in 

which is a null vector of H. 

(a) If f) ri(R^) = 0^, then n(R^) C © ... 0 

® a. .T @ ... © a = T."^. Therefore t. c n (R_)"^ = ^(R_) . 
X*r X lU X X C C 

-y If (t) is completely driven, then vf((Rg) and 

© ... @ © . .. © = n ' 

which implies that o^ f\ r\ (R^) = 0^. 

(b) Let n be an eigenvector in such that Hn = 0^. 

Then 

t. 

R^n = 
c— 

$ (t) (t)ndt 

^1 X.*t 
e ̂  $ (t) Hvdt 

= 0 (5.11) 

Thus n is a nontrivial vector in n(R^). -> Let v be a non-

trivial vector in such that R^v = 0^. Since the integrand 

in (9.9) is nonnegative definite, $^(t)v must be a null 

vector of H for all values of t. But 

/ / 4 
$ (t) = Z 4) . (t) (A ) ̂ 

j=0 3 

where m is the degree of the minimal polynomial of A, and 

cj)j (t) are linearly independent functions of time. 
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This implies that each of the vectors Vj = (A^)^v is a null 

vector of H. Since is invariant under these vectors 

are all elements of and they define a cyclic subspace of 

cr^ which by Theorem 8.3, contains an eigenvector of 

This eigenvector is a linear combination of the vectors Vj, 

which implies that it is also a null vector of H. Q.E.D. 

Theorem 9.2; 

The mode (t) is completely observable if and only if 

no eigenvector of A corresponding to the eigenvalue is 

a null vector of M. 

Proof: 

The following proof shows that £j_(t) is not completely 

observable if and only if there is an eigenvector in 

which is a null vector of M. This therefore also proves 

the theorem as stated. 

Let V be an eigenvector in x^ such that Mv = 0^. Then 

P̂ '̂v = 0 / so V is a non trivial vector common to both x. and c — — — 1 

n(P^^). The mode, therefore, is not completely observable. 

-»• Suppose (t) is not completely observable. Then 

there must be a nontrivial vector, n, in x. such that P_^n = 0. — 1 c — — 

This implies that each of the vectors n. = A^n is a null 
—] — 

vector of M. Since x^ is invariant under A, these vectors 

are all elements of x^ and they define a cyclic subspace of 

Xj^ which, by Theorem 8.3, contains an eigenvector of A. This 

eigenvector is a linear combination of the vectors v., which 
—] 
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implies that it is also a null vector of M. Q.E.D. 

In the discrete-time case, the random process is 

described by the equations 

-k+1 -k (9-12) 

^ = Mx^ (9.13) 

where E[h^hj^ ] = j. The Jordan decompositions of $ and 

$ ̂ are 

$T = TA (9.14) 

/ _i * -1 * * 
$ (T -̂ ) = (T ) A 

— 1 * 
respectively where the partitionings of T, A ,  and (T ) 

are given by (9.4, 9.5, and 9.7). The ith mode, ^ 

is defined to be completely driven if y^(R^) , where 

 ̂ "i 4 / 
R, = E $JH(*J) , (9.16) 
^ j=Q 

and it is defined to be completely observable if 

^i /I n (P^ ) = 0_, where 

= [M'', ... ($')*"!%'] . (9.17) 

Theorem 9.3: 

The i^ mode of (9.12) is completely driven if and only 

/ * if no eigenvector of $ corresponding to the eigenvalue 

is a null vector of H. 
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Proof: 

The proof is very similar to the proof of Theorem 9.1. 

Part (a) is identical except for the replacement of by 

and therefore is not repeated. In part (b) it is shown 

that has a nontrivial vector in rj (R^) if and only if 

there is an eigenvector of 0^ in which is a null vector of 

H. 

(b) Let n be an eigenvector in such that Hn = 0^. 

Then 

n-1 . ./ 
R.n = Z ) n 

j=0 

n-1 * i -i 
= s (X. ) $^Hn 
j=0 ^ 

= 0, (9.18) 

and n is a nontrivial vector in ri(R,). -»• Let v be a 
— a — 

nontrivial vector in a. such that R,v = 0. Since each term 
1 a— — 

in the summation (9.16) is nonnegative definite, each of the 

vectors v^ = ($'')^v must be a null vector of H, and these 

null vectors define a cyclic subspace of a. which contains 

an eigenvector of $ which is a null vector of H. Q.E.D. 

Theorem 9.4: 

The mode (t^) is completely observable if and only if 

no eigenvector of $ corresponding to the eigenvalue X^ is a 

null vector of M. 
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Proof; 

Except for the replacement of by P^ and A by the 

proof of this theorem is identical to the proof of Theorem 

9.2. 

The final theorem establishes formulas which describe 

the subspaces of the state space which are completely un-

driven and completely unobservable respectively. 

Theorem 9.5; 

(a) The basis vectors for n(R^) can be chosen such that 

= N^A^* (9.19) 

and 

HN^ = 0 (9.20) 

where the columns of are the chosen basis vectors. 

that 

and 

(b) The basis vectors of n(P^^) can be chosen such 

™0 = Vo (5-21) 

MNg = 0 (9.22) 

where the columns of Nq are the chosen basis vectors. 

Proof; 

(a) Let n be any null vector of R^. Then since each 

term in (9.16) is nonnegative definite, ($^)^n is a null 
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vector of H for j=0, 1, ... n-1. The Cayley-Hamilton 

theorem implies that ($')^n is also a null vector of H, so 

therefore R^^'^n = 0^. Thus n (R^) is invariant under $ ̂, and 

its basis vectors satisfy an equation such as (9.19). If 

the resulting is not in Jordan form, it can be put into 

Jordan form by means of a similarity transformation. Equa­

tion (9.20) results from the fact that any null vector of 

is also a null vector of H. 

(b) Let n be any null vector of P^/. Then $^n is a 

null vector of M for j = 0,l,...,n-l. The Cayley-Hamilton 

theorem implies that $^n is also a null vector of M, so 

therefore P^0n =0. Thus n(Pj,) is invariant under and 

its basis vectors satisfy (9.21) . Again Aq can be put into 

Jordan form by means of a similarity transformation, and 

(9.22) results from the fact that any null vector of P^ 

is also a null vector of M. 
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